A new look in the representation of AES like S-box

Authors

  • Pablo Freyre Arrozarena
  • Adrián Alfonso Peñate
  • Alejandro Freyre Echevarría
  • Ramses Rodríguez Aulet

DOI:

https://doi.org/10.54654/isj.v3i17.900

Keywords:

S-box, permutations, invertible matrices, modular addition, symmetric group

Tóm tắt

Abstract Substitution box plays an essential role in block ciphers as their main non-linear component in the round function, providing confusion. In this paper, it will be proven how the action of any substitution box on every fixed element can be represented through an affine transformation using an invertible matrix in a finite field. Furthermore, a particular way to represent the action of permutations on every element through a modular addition is given. An analysis of the AES substitution box is conducted based on the theoretical results obtained.

Downloads

Download data is not yet available.

References

Matsui, M. (1993, May). Linear cryptanalysis method for DES cipher. In Workshop on the Theory and Application of Cryptographic Techniques (pp. 386-397). Springer, Berlin, Heidelberg.

Biham, E., & Shamir, A. (1991). Differential cryptanalysis of DES-like cryptosystems. Journal of CRYPTOLOGY, 4(1), 3-72.

Armknecht, F. (2004, February). Improving fast algebraic attacks. In International Workshop on Fast Software Encryption (pp. 65-82). Springer, Berlin, Heidelberg.

Canteaut, A. (2016). Lecture notes on cryptographic Boolean functions. Inria, Paris, France, 3.

Standard, D. E. (1999). Data encryption standard. Federal Information Processing Standards Publication, 112.

Daemen, J., & Rijmen, V. (2002). The design of Rijndael (Vol. 2). New York: Springer-Verlag.

Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., & Roback, E. (2001). Report on the development of the Advanced Encryption Standard (AES). Journal of research of the National Institute of Standards and Technology, 106(3), 511.

Holt, D. F., Eick, B., & O'Brien, E. A. (2005). Handbook of computational group theory. Chapman and Hall/CRC.

Cannon, J. (1983). A computational toolkit for finite permutation groups. In Proceedings of the Rutgers Group Theory Year (Vol. 1984, pp. 1-18).

Sims, C. C. (1998). Computational group theory. Rutgers University.

Kostrikin, A. (1980). Introducción al Álgebra Ed. Mir Moscú.

Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C., Poschmann, A., Robshaw, M. J., ... & Vikkelsoe, C. (2007, September). PRESENT: An ultra-lightweight block cipher. In International workshop on cryptographic hardware and embedded systems (pp. 450-466). Springer, Berlin, Heidelberg.

Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., & Win, E. D. (1996, February). The cipher SHARK. In International Workshop on Fast Software Encryption (pp. 99-111). Springer, Berlin, Heidelberg.

Downloads

Abstract views: 762 / PDF downloads: 94

Published

2023-04-01

How to Cite

Freyre Arrozarena, P. ., Peñate, A. A., Echevarría , A. F., & Aulet , R. R. . (2023). A new look in the representation of AES like S-box. Journal of Science and Technology on Information Security, 3(17), 53-60. https://doi.org/10.54654/isj.v3i17.900

Issue

Section

Papers