On some algorithms related to matrices with coefficients in a finite field and their computational complexity

Authors

  • Pablo Freyre Arrozarena
  • Alejandro Freyre Echevarría
  • Ernesto Dominguez Fiallo
  • Ramses Rodríguez Aulet
  • Samir Alzugaray Vizcaino

DOI:

https://doi.org/10.54654/isj.v1i21.1032

Keywords:

non-singular matrices, multiplication of polynomials, computational complexity

Tóm tắt

Abstract— In the literature survey, there exist several research papers devoted to the generation of non-singular matrices with coefficients in a finite field. One of these papers refers to the generation of such matrices through the multiplication of polynomials modulus a primitive polynomial. However, the complexity bound given for the algorithm is not accurate. Thus, in this paper, we conduct a new analysis on the complexity of the same. We also remove the restriction of using a primitive polynomial to generate the matrix by using an arbitrary monic polynomial over a finite field whose independent term is distinct from zero.

Downloads

Download data is not yet available.

References

Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C.: “Introduction to Algorithms”. MIT Press, Massachusetts, 2022.

Alman, J. and Williams, V. V.: “A refined laser method and faster matrix multiplication”. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 522–539, 2021.

Li, Y.-X., Li, D.-X., and Wu, C.-K.: “How to generate a random nonsingular, matrix in McEliece’s public-key cryptosystem”. In Proceedings Singapore ICCS/ISITA92, pp. 268–269, IEEE, 1992.

Randall, D.: “Efficient generation of random nonsingular matrices”. Random Structures & Algorithms, Vol. 4(1), pp. 111–118, 1993.

Freyre, P., Díaz, N. and Morgado, E.: “Fast algorithm for the multiplication of a row vector by a randomly selected matrix A”. Journal of Discrete Mathematical Sciences and Cryptography, Vol. 12(5), pp. 533–549, 2009.

Murray, S.H.: “The Schereier-Sims algorithm”. Essay submitted to the Department of Mathematics of the Australian National University, 2003.

Holt, D.F., Eick, B. and O’Brien, E.A.: “Handbook of computational group theory”. CRC Press, 2005.

Cannon, J. “A computational toolkit for finite permutation groups”. In Proceedings of the Rutgers Group Theory Year, Vol. 1984, pp. 1–18, 1983.

Green, J. A.: “Sets and groups: A first course in algebra”. Springer, 1988.

Peterson, W.W. and Weldon, E.J.: “Error-correcting codes”. MIT Press, Massachusetts, 1972.

Harvey, D. and Der Hoeven, J.: “Faster polynomial multiplication over finite fields using cyclotomic coefficient rings”. Journal of Complexity, Vol. 54, pp. 101404, 2019.

Cantor, D.G. and Kaltofen, E.: “On fast multiplication of polynomials over arbitrary algebras”. Acta Informatica, Vol. 28(7), pp. 693–701, 1991.

Brent, R.P. and Zimmermann, P.: “Modern Computer Arithmetic”. Cambridge University Press, 2010.

Althoen, S.C., Mclaughlin, R.: “Gauss-jordan reduction: A brief history”. The American Mathematical Monthly, Vol. 94(2), pp. 130–142, 1987.

Press, W.H., Teukolsky, S.A., Vetterling W.T. and Flannery, B.P.: “Numerical recipes: the art of scientific computing”. Cambridge University Press, 1992.

Krishnamoorthy, A. and Menon, D.: “Matrix inversion using Cholesky decomposition”. In 2013 Signal Processing: Algorithms, Architectures, Arrangements and Applications, pp. 70–72, IEEE, 2013.

Vajargah, B.F.: “A way to obtain Monte Carlo matrix inversion with minimal error”. Applied Mathematics and Computation, Vol. 191(1), pp. 225–233, 2007.

Huang, Y. and McColl, W.: “Analytical inversion of general tridiagonal matrices”. Journal of Physics A: Mathematical and General, Vol. 30(22), 1997.

Ries, F., De Marco, T. and Guerrieri, R.: “Triangular matrix inversión on heterogeneous multicore systems”. IEEE Transactions on parallel and distributed systems, Vol. 23(1), pp. 177 – 184, 2011.

Strassen, V. et. al.: “Gaussian elimination is not optimal”. Numerische Mathematik, Vol. 13(4), pp. 354 – 356, 1969.

Coppersmith, D. and Winograd, S.: “On the asymptotic complexity of matrix multiplication”. SIAM Journal on Computing, Vol. 11(3), pp. 472 – 492, 1982.

Traub, J.F.: “Associated polynomials and uniform methods for the solution of linear problems”. SIAM Review, Vol 8(3), pp. 277 – 301, 1966.

Downloads

Abstract views: 743 / PDF downloads: 23

Published

2024-06-27

How to Cite

Freyre Arrozarena, P. ., Alejandro, F. E., Ernesto , . D. F., Ramses, R. A., & Samir , A. V. (2024). On some algorithms related to matrices with coefficients in a finite field and their computational complexity. Journal of Science and Technology on Information Security, 1(21), 16-30. https://doi.org/10.54654/isj.v1i21.1032

Issue

Section

Papers

Most read articles by the same author(s)