An algorithm to select a secure twisted elliptic curve in cryptography


  • Dinh Tien Thanh
  • Nguyen Quoc Toan
  • Nguyen Van Son
  • Nguyen Van Duan



fault attacks, twist curve, Montgomery ladder, elliptic curve cryptosystem

Tóm tắt

Abstract—Fault attack is a powerful adjacency
channel attack technique to break cryptographic
schemes. On elliptic curve cryptography (ECC),
fault attacks can be divided into three types: safeerror attacks, weak-curve-based attacks, and
differential fault attacks. In the paper [1], the
author has presented the fault attack on the elliptic
curve cryptosystem based on the quadratic twist
curve and Proposed criteria to resist elliptic fault
attack on the elliptic curve. In this paper, we
propose an algorithm to choose a twist secure
elliptic curve and evaluate the paths published in
cryptographic standards around the world.
Tóm tắt Tấn công gây lỗi là một kỹ thuật tấn
công kênh kề mạnh nhằm phá vỡ các lược đồ mật
mã. Tấn công gây lỗi lên mật mã đường cong
elliptic (ECC) có thể được chia thành ba loại: tấn
công safe-error, tấn công dựa trên đường cong yếu
và tấn công gây lỗi vi sai. Trong bài báo [1], nhóm
tác giả đã làm tường minh tấn công gây lỗi lên
ECC dựa vào đường cong xoắn và đề xuất tiêu chí
để chống lại tấn công gây lỗi trên ECC. Bài báo
này nhóm tác giả đề xuất thuật toán lựa chọn
đường elliptic an toàn xoắn và đánh giá an toàn
xoắn cho các đường cong elliptic đã công bố trong
một số chuẩn mật mã.


Download data is not yet available.


Dinh Quoc Tien, Do Dai Chi, “Về tấn công gây

lỗi trên hệ mật đường cong elliptic dựa vào đường

cong xoắn", Journal Journal of Science and

Technology on Information security, No 2. 2016.

Accredited Standards Committee X9. "American

National Standard X9.62-2005, Public key

cryptography for the financial services industry:

the elliptic curve digital signature algorithm

(ECDSA)." 2005

B. Black, J. Bos, C. Costello, P. Longa, M.

Naehrig, “Elliptic Curve Cryptography (ECC)

Nothing Up My Sleeve (NUMS) Curves and

Curve Generation”,

Certicom Research. " SEC 1: Elliptic Curve

Cryptography, Version 2.0." May 21, 2009.

Certicom Research, “SEC 2: Recommended

Elliptic Curve Domain Parameters”, 2010.

Daniel J. Bernstein, Tanja Lange, And Peter

Schwabe, “On the correct use of the negation map

in the Pollard rho method” ,

Diego F. Aranha, Paulo S. L. M. Barreto,

Geovandro C. C. F. Pereira, And Jefferson E.

Ricardini, “A note on high-security generalpurpose elliptic curves”, 2013,

ECC Brainpool, “ECC Brainpool Standard

Curves and Curve Generation”, 2010.

Hoheisel, G., Primzahlprobleme in der Analysis.

Sitz. Preuss. Akad. Wiss. 33 (1930), 580—588.

P.-A. Fouque, R. Lercier, D. Réal and F. Valette,

“Fault attack on elliptic curve Montgomery ladder

implementation, Fault Diagnosis and Tolerance in

Cryptography”, 2008. FDTC'08. 5th Workshop

on, IEEE,, 2008.

RFC 7836, “Guidelines on the Cryptographic

Algorithms to Accompany the Usage of

Standards GOST R 34.10-2012 and GOST R


Roberto M. Avanzi, Henri Cohen, Christophe

Doche, Gerhard Frey, Tanja Lange, Kim Nguyen,

Frederik Vercauteren, “Handbook of Elliptic and

Hyperelliptic Curve Cryptography”, 2005.

U.S. Department of Commerce/National Institute

of Standards and Technology,

“Recommendations for Discrete LogarithmBased Cryptography: Elliptic Curve Domain

Parameters”, FIPS-186-6 (draft) 2019.

Miracl, Miracl Cryptographic SDK,, Accessed on


B. Buhrow. (2010) yafu. Available:

Edlyn Teske (2000), “On Random Walks for

Pollard’s Rho Method”, Mathematichs of

Computation, Vol. 70, No. 234, pp. 809-825.


Abstract views: 0 / PDF downloads: 0



How to Cite

Thanh, D. T., Toan, N. Q., Son, N. V. ., & Duan, N. V. (2022). An algorithm to select a secure twisted elliptic curve in cryptography. Journal of Science and Technology on Information Security, 1(15), 17-25.