Privacy-preserving frequent itemset mining in vertically distributed data using ElGamal encryption

Authors

  • Nguyễn Văn Chung
  • Trần Đức Sự

DOI:

https://doi.org/10.54654/isj.v1i16.928

Keywords:

privacy-preserving, frequent itemset mining, secure data mining

Tóm tắt

Abstract Privacy-preserving data mining is increasingly receiving the attention of the research community, especially privacy-preserving frequent set mining, which is a topic that has been discussed a lot in recent times. In this paper, we propose a novel technique for privacy-preserving freuquent itemset mining in three party vertically distributed data. We show that the proposed technique is as efficient as the best existing protocols for performing the same task, and more secure than the most secured protocols with against collusion, 3 members joined the protocol the 2 members colluded not to reveal data of the other member.

Downloads

Download data is not yet available.

References

D. W. Cheung, J. Han, V. T. Ng, A. W. Fu, and Y. Fu (1996). “A fast distributed algorithm for mining association rules,” in DIS ’96: Proceedings of the fourth international conference on on Parallel and distributed information systems, pp. 31-43, IEEE Computer Society.

Y.-H. Wu, C.M. Chiang, and A. L. P. Chen (2007). “Hiding sensitive association rules with limited side effects,” IEEE Trans. on Knowl. and Data Eng., vol. 19, no. 1, pp. 29-42.

Dehkordi MNM, Badie K, Zadeh AKA (2009). A novel method for privacy preserving in association rule mining based on genetic algorithms. J Softw 4(6):555-562.

Kasthuri S, Meyyappan T (2013). Detection of sensitive items in market basket database using association rule mining for privacy preserving. In: IEEE international conference on pattern recognition, informatics and mobile engineering (PRIME).

Lin, C.W., Hong, T.P., Hsu, H.C (2014). Reducing side effects of hiding sensitive itemsets in privacy preserving data mining. The Scientific World Journal 2014, 267-289.

Afzali, G. A., & Mohammadi, S. (2018). Privacy preserving big data mining: association rule hiding using fuzzy logic approach. IET Information Security, 12(1), 15-24.

Telikani, A., Gandomi, A. H., Shahbahrami, A., & Dehkordi, M. N. (2020). Privacy-preserving in association rule mining using an improved discrete binary artificial bee colony. Expert Systems with Applications, 144, 113097.

S. R. M. Oliveira and O. R. Za¨ıane (2002). “Privacy preserving frequent itemset mining,” in CRPIT ’14: Proceedings of the IEEE international conference on Privacy, security and data mining, pp. 43-54, Australian Computer Society, Inc.

S. Agrawal and J. R. Haritsa (2005). “A framework for high-accuracy privacypreserving mining,” in ICDE ’05: Proceedings of the 21st International Conference on Data Engineering, pp. 193-204, IEEE Computer Society.

Baotou T (2010). Research on privacy preserving classification data mining based on random perturbation Xiaolin Zhang Hongjing Bi. 1-6.

Polat H. and Wenliang Du (2003). Privacy-preserving collaborative filtering using randomized perturbation techniques. Third IEEE International Conference on Data Mining, Melbourne, FL, USA, IEEE Comput. Soc, 625–628.

Chaytor R. and Wang K. (2010). Small domain randomization: same privacy, more utility. Proc VLDB Endow, 3(1–2), 608–618.

M. Kantarcioglu and C. Clifton (2004). “Privacy-preserving distributed mining of association rules on horizontally partitioned data,” IEEE Trans. on Knowl. and Data Eng., vol. 16, no. 9, pp. 1026-1037.

O. Goldreich (2004). The Foundations of Cryptography, volume 2, chapter 7: General Cryptographic Protocols. Cambridge University Press, 2nd ed.

Malik, M.B., Ghazi, M.A., Ali, R (2012). Privacy preserving data mining techniques: current scenario and future prospects, in: Proceedings of Third International Conference on Computer and Communication Technology (ICCCT), IEEE. pp. 26-32.

Moses, T.J., Elavarasi, K., Jayachitra, J. (2014). Privacy preserving mining of association rules in horizontally distributed databases. Interna-tional Journal of Management, IT and Engineering 4, pp. 209-222.

Nanavati, N.R., Lalwani, P., Jinwala, D.C. (2014). Analysis and evaluation of schemes for secure sum in collaborative frequent itemset mining across horizontally partitioned data. Journal of Engineering 2014, pp. 110-120.

Hien, V. D. (2022). An Efficient Solution for Privacy-preserving Naïve Bayes Classification in Fully Distributed Data Model. Tạp Chí Khoa học - Công nghệ Trong lĩnh vực An toàn thông Tin, 1(15), 56-61

J. Vaidya and C. Clifton (2005). “Secure set intersection cardinality with application to association rule mining,” J. Comput. Secur., vol. 13, no. 4, pp. 593-622.

J. Vaidya and C. Clifton (2002). “Privacy preserving association rule mining in vertically partitioned data,” in KDD ’02: Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 639-644, ACM.

S. Zhong (2007). “Privacy-preserving algorithms for distributed mining of frequent itemsets,” Information Sciences, vol. 177, no. 2, pp. 490-503.

Li, L., Lu, R., Choo, K. K. R., Datta, A., & Shao, J. (2016). Privacy-preserving-outsourced association rule mining on vertically partitioned databases. IEEE Transactions on Information Forensics and Security, No. 11, Vol. 8, pp. 1847-1861.

J. Vaidya and C. Clifton (2002). “Privacy preserving association rule mining in vertically partitioned data,” in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM.

Zhong, Z. Yang, and T. Chen (2009). “k-anonymous data collection,” Inf. Sci., vol. 179, no. 17, pp. 2948-2963.

M. Hirt and K. Sako (2000). “Efficient receipt-free voting based on homomorphic encryption,” in Proceedings of EuroCrypt 2000, LNCS series, pp. 539-556, Springer-Verlag.

S. Zhong, Z. Yang, and R. N. Wright (2005). “Privacy-enhancing kanonymization of customer data,” in Proceedings of the twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 139-147, ACM.

M. Michels and P. Horster (1996). “Some remarks on a receipt-free and universally verifiable mix-type voting scheme,” in Proceedings of the International Conference on the Theory and Applications of Cryptology and Information Security: Advances in Cryptology, pp. 125-132, Springer-Verlag.

Downloads

Abstract views: 117 / PDF downloads: 87

Published

2023-02-13

How to Cite

Chung, N. V., & Sự, T. Đức. (2023). Privacy-preserving frequent itemset mining in vertically distributed data using ElGamal encryption. Journal of Science and Technology on Information Security, 2(16), 81-88. https://doi.org/10.54654/isj.v1i16.928

Issue

Section

Papers