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A new study for global dynamics and
numerical simulation of a discrete-time
computer virus propagation model

Truong Ha Hai, Pham Hoai Thu, Hoang Manh Tuan

Abstract— This work is devoted to conducting
a new study for global dynamics and numerical
simulation of a discrete-time computer virus
propagation model, which was constructed in our
recent work. By utilizing well-known results on
asymptotic stability of discrete-time dynamical
systems, we establish the global asymptotic
stability of a unique viral equilibrium point,
whereas only its local asymptotic stability was
previously analyzed. After that, we investigate
convergence and provide an error bound for the
discrete-time model. Next, the step doubling
strategy is applied to control errors. The result is
that the accuracy of approximations generated by
the discrete-time model is enhanced. The obtained
results not only improve the ones constructed in
the benchmark work, but also can be useful to
study reliable  numerical ~methods for
mathematical models of malware. Finally, we
present two numerical experiments that support
and illustrate the theoretical findings of this study.

Tém tit— Bai bao dé xuat mét nghién ciu
méi vé dong luc toan cuc va loi giai xdp xi cho
mét mo hinh lan truyén virus may tinh véi thei
gian roi rac. Bang cach ap dung céac két qua vé sw
on dinh tiém can caa cac hé dong lwc roi rac,
nhom téac gia thiét lap dwoc tinh chét 6n dinh tiém
can toan cuc caa diém can bing dwong duy nhat
trong khi chi c6 tinh chat én dinh tiém céan dia
phwong ciia n6 dwoc thiét lap truée dé. Sau dé,
nhém t4c gia phan tich sy hi tu va dwa ra wéc
lwong sai s6 cho mé hinh roi rac. Tiép theo, chién
lwgc gap ddi bwée lwdi dwoc 4p dung dé kiém soat
sai $6. Két qua 1a d chinh xac cia céc loi giai xap
xi dwgc nang cao. Cac két qua thu dwgc khong
nhitng cai thién nghién ciru dwge dé xuat truwéc
didy ma con c6 thé mé rong dé xay dung cac
phwong phap hig¢u qua giai xap xi cac md hinh
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toan hoc md ta sw lan truyén cia cac phan mém
doc hai. Cuoi cung, nhom tac gia thuc hién cac
thir nghiém so dé minh hea va ho trg cho cac ket
qua ly thuyét.
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Tir khda — Pgng luc toan cuc; md phéng sé; ly thuyét
on dinh Lyapunov; virus may tinh; phwong phdp sai phin
phi tiéu chudn; chién liwgc gdp doi buéc ludi.

|. INTRODUCTION

We start by considering a mathematical
model of the spreading of computer viruses
proposed in [6] by Gan et al:

S=v,1+n,E—uS—BSI—v,S,
[ =BSI—pul =yl =yl +mE, (1)
E=6+y,S+y, ] —uE —nE —n,E,

where S(t), I(t) and E(t) are functions of time t,
which denote the average numbers of
susceptible, infected and external computers,
respectively; all the parameters take positive
values due to biological reasons. More details of
the model (1) were presented in [6]. In [17],
Pham and Hoang developed the Mickens’
methodology [14, 15, 16] to construct a
nonstandard finite difference (NSFD) method for
the continuous-time model (1), which has the
following form:

Spe1— S

% = Voln + M2En — USnsa

_:BSn+1In - y15n+1:

In+1 - In
— =S, — ul — v
q)(At) .8 n+1'n Ulpyq Y1iln+1
_Yzln + 771En'
Eni1 —E

n
(p(At) 1“n+1 1in+1 n+1
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_TllEn - ann- (2)
In the system (2):
e At > 0 isthe step size.

o (S,L,ED)T (n=12,..,M) are
the intended  approximations  for
(S(t,), I(ty), E(t,))T with t, = nAt,n =
0,1, ..., M, respectively.

e The denominator ¢@(At) is a
positive function and satisfies @(At) =
At + O(At?) as At - 0.

By rigorous mathematical analysis, it has
been shown that the NSFD scheme (2) correctly
maintain essential mathematical properties of the
continuous-time model (1), which include the
positivity and boundedness of the solutions, the
set of equilibria and the local asymptotic stability
(LAS) of a unique viral equilibrium (VEP) for all
At > 0. Also, the theoretical assertions were
supported by a series of illustrative numerical
simulations [17].

While the global asymptotic stability (GAS)
of the continuous-time model has been
established in [6], only the LAS of the discrete-
time model (2) was proven in [17]; therefore, our
first objective is to study the GAS of the VEP of
(2). Here, it is important to remark that the
analysis of global asymptotic stability (GAS) of
dynamical systems is an important problem,
which has numerous useful applications in both
theory and practice contexts but it is generally
not a straightforward task [5, 11]. In particular,
the GAS problem of NSFD methods for
dynamical systems governed by differential
equations is very challenging. Recently, the GAS
analysis of NSFD methods for some classes of
mathematical models described by differential
equations has been studied based on various
approaches [3, 4, 8].

Motivated by the aforementioned reasons,
we first establish the complete GAS of the NSFD
model (2) by applying well-known results on
asymptotic stability of discrete-time dynamical
systems, which were proposed in [10]. With the
help of these stability results and suitable
Lyapunov functions, the GAS analysis of the
NSFD method (2) is reduced to studying the
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GAS of a one-dimensional dynamical system, in
which the GAS problem is easily analyzed. As a
result, the complete GAS of the unique VEP is
established in Theorem 1, which improves the
results presented in [17]. It is important to remark
that the present approach has been used in [3, 8]
to examine the GAS of computer virus
propagation models.

In the second part of the present work, we
study the convergence and give error estimates
for the NSFD method (2). More clearly, we prove
that it is only convergent of order one and give
an estimate for its global error (Theorem 2). For
this reason, the step doubling strategy [1, 2, 7] is
applied to control errors. Consequently, the
accuracy of approximations is enhanced. It
should be emphasized that improving accuracy
of NSFD methods for differential equations is
very important and has attracted special attention
of many researchers [9, 12, 13]. By using the step
doubling strategy for the NSFD method (2), the
local truncation error is controlled and the step
size is automatically selected. The most
important thing is that the original NSFD method
(2) is dynamically consistent with the time-
continuous model (1), so are the generated
approximations.

In the third part of the present work, the
theoretical insights are supported by two
numerical examples, which provide evidence
supporting the findings of this work.

This work is organized as follows: In Section
I, we study the GAS of the NSFD model (2).
Convergence and error estimates are investigated
in Section I11. A series of numerical experiments
is reported in Section IV. Section V presents
some concluding remarks and open problems.

1. ANALYSIS OF GLOBAL ASYMPTOTIC STABILITY

The aim of this section is to establish the
GAS of the NSFD model (2). We recall that the
explicit form of (2) is given by [17]:

g _Snt @Oyl + 90N,y
T 14 (u Bl + y)e(AL)

)

Ity

_ 1 =)y )L, + (A)BSy i1l + (AN, E,
1+ (u+vy)e(At) '




_9A)6 + @(At)y1(Sny1 + Ins1)

mH 1+ up(At)
[1— @A) (ny +12)]E, 3)
1+ pp(At)

From now on, we always assume that the
following assumption holds for ¢ (At):

p(at) < {

This condition implies that the NSFD method
(2) preserves the positivity, boundedness and
LAS of the continuous-time model (1) for all
finite step sizes At > 0 [17]. We recall that the
model (2) always possesses an unique VEP E}, =
(§*,I",E™) given by:

= O(u+v1)
p(u+y, +n1 + 1)

1 1
v2 mi+1

},VAt > 0. (4)

I =
_ﬁW_(ll+V1+V2)
= 2
+\/[,8W —(u+vyL+v2)]?+ 4B E*
2p
0

S*:——E*—I*,
U

(5)

Where:
_ 6. +12)
w = .
p(u+vy, + 11 +12)

Our main objective is to show the GAS of
the VEP Ej;. Let us denote N, == S, + E, + I,
for n > 0. Then, we represent the system (2) in a
new form with the appearance of N,,:

Nn+1 - Nn
R = 8 — N,
qD(At) UNp4q

E.i1—Ey
R S 4y, (Npyy — Ensy) — KE
(p(At) 1( n+1 n+1) n+1

- 771En - 772En:

In+1 - In
L BNy — Eppy — L)L, — pl
(p(At) B( n+1 n+1 n+1) n n+1

= Vilns1 — Voln + M Ey. (6)

Note that the unique equilibrium Ej; is now
transformed to:

6
Enew = (N%E* 1) = <;_1'E*'1*)'
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The following theorem shows the GAS of
the unique equilibrium point of the discrete-
time model (2) while only its LAS was shown
in [17] (Theorem 2 in [17]).

Theorem 1. Assume that ¢ (4t) is a function

with the property that
P(4t) < ;#E , VAt > 0. @)

Then, the viral equilibrium point E;,,,, of the
model (6) is globally asymptotically stable with
respect to the set R3 := {(N,E,I)|N,E,I = 0}.

Proof: The proof consists of three sequential
steps outlined as follows.

Step 1: Reduce the 3-D system (6) to a 2-D
system. Consider a Lyapunov candidate function
defined by:

2

0
Vl(Nn; I, En) = (N, — N*)Z = (Nn - ;) .

It follows from the first equation of (6) that:

AV, (Ny, Ey, 1) = Vi(Npi1s In1s Ens1)

- Vl (Nn' In» En)

= (Npy1 — N*)Z - (N, — N*)z

= (Np41 + Ny = ZN*)(Npyq

- n)

= —pu(2 + pu)(Npyy — N2

This implies that AV; < 0 for all

(N,, E,,I,) € R3 and AV, =0 ifand only if N,
= N=x. Consequently, if we denote by G; the
largest positively invariant set contained in G, :
={(N,E,I) € R3|AV,(N,E,I) = 0}, then

G;={(N,E,]) € R3|N = N*}.

By using Theorem 3.2 in [10], it is sufficient
to show that E;,,, is G;-globally asymptotically
stable. Since Gy is also a positively invariant set
of (6), we only need to consider the following
subsystem

Eni1 — Ey g
—=0+y (——E )—,uE
(p(At) 1 M n+1 n+1
- nlEn - nZEn'
Lnyy — Iy (6 )
2t (== Epyy = Lyeq ) I, — ul
QD(At) .B M n+1 n+1)'n Ulpyq

- )/1In+1 - Vzln + nlEn (8)
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on a feasible set, which is given by Q :=
{(E, DERI+E< g}

Step 2: Reduce the 2-D system (8) to a 1-D
system. Consider a Lyapunov function candidate
given by:

V; (Enr In) = (En - E*)Z-

Then, we deduce from the first equation of
the system (8) that:

AV, (En' In):= v (En+111n+1) -V, (En' In) =
(En+1 — E*)Z — (En — E*)Z = (En+1 +E, —
2E) (Epas — ) = —A(2 — A)(Ey — E*)?,

Where:

_eutn+n; +y1)
T 14e(nt+w
_outn+m, +V1)]
1+on+uw

Hence, AV, < 0 for all (E,,I,,) € R% and
AV, = 0 if and only if E,, = E*. Consequently,
the largest positively invariant set contained
in  G,:={(E,]) € RE|AV,(E,]) = 0} s
defined by:

G; = {(E,]) € R%|E = E*}.

By using Theorem 3.2 in [10], we only need
to prove that (E* I*) is G, -globally
asymptotically stable. Because G, is also a
positively invariant set of (8), it is sufficient to
analyze the following equation:

In+1 - In

)
gl (; LA e A

—Vilper = Vol + mE™ (9)
on a feasible set Q" := {I ER,|I < %}

Step 3: Establish the GAS of the equation (9).
We rewrite the equation (9) in the form:

3 B
1+ @BL + @ +y1)
- 1_)(111. - I+)l
where I*=1">0 and I~ < 0 are
solutions of the quadratic equation:

(I

In+1 = In

two
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12—%[ﬁ(§—E*—y2)—(u+h)Jl

1 *
_ET’:LE = 0.

Consider a Lyapunov function candidate
given by:

(10)

Vs(Ip) = (I — I")?.

By using (10), it is easy to check that
AV = —A;(2 = AU, — 1)U, — I')2.
Where:
B oB, —17)
1+ B+ oty
Note that we deduce from (10) that
_ mE”

pI+’

which implies that if (7) holds, then 2 - A; > 0.
Hence, we conclude that AV; > 0 for all I,, >
0 and AV; = 0 if and only if I, = I".
Consequently, from the Lyapunov stability
theory [5], we obtain the GAS of I*.

Now, the GAS of E;,, of the full model
(6) is obtained by combining steps 1-3. The
proof is complete.

1

|~ =

I11. CONVERGENCE AND ERROR ESTIMATES

In this section, we study convergence and
give an error bound for the numerical method (2).
Let y(t) = (S(0),1(t),E(t))" be the exact
solution of (1)

VYo = (Sp, I, E,)T be the approximate
solution generated by (2), f(y(¢)) and g(yn, At)
be the right-hand sides of (1) and (3),
respectively. Then, it can be easily verified that

dg(y,0)
oAl - f») 11

Thanks to the boundedness of y(t) and y,,
we define:

g, 0) =y,

D := supl|yyl,

n=0

¢ == sup|ly(®)l],
t20

C, = suplly”" @Il
t=0

Qcp = {yllyll < max{C,D}}.



For each At* > 0, we denote:
Qp = {(y, A)]llyll <D,0 < At < At*},

and

. af(}’)
L yEQCD
0%g(y, At)
t2 = VI ADEQD dAt? + G (12)

Theorem 2. (Convergence and global error).
The NSFD method (2) is convergent of order one.
Moreover, the following estimate is satisfied for
n=>0:

”:V(tn) —Vn fifn — 1)-

Proof: First, let us denote e,, = y(t,)- Vn-
By using (2), (11) and the Taylor’s theorem,
we obtain:

Y(tne1) = Y(t + At)
Atf(y(t,)) + —Y"(fn)

= y(tn) +

Yn+1 = 9(n, AL) =y + Atf () +
At? 3%g
T IAL2 (Ynl I/Jn)i

of

f(Y(tn)) - f(Yn) = @ (en)(y(tn) - yn);

where &,,, € (t,, t, + At) and 6,
between y(t,) and y,. Therefore:

is a point

Y(tns1) = Yne1 = (&) — ) +
At(f(y(tn) ~ £ o)+ ("6 -

aAtZ (Yn: ¢n)) = (y(t,) —y) +
6At2 (yn' lpn))

which implies that
llensall < llenll + Aty llen |l + 7,482,

where 1, and t, are given by (12). By some
simple algebraic manipulations, we have that
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llen+all = (1 + AtT1)n+1”6’0”
n
+ 1,At? Z(l + Att,).

j=0

Since |leyll = 0, the above estimate is

simplified to
llensall < T,At? 27 o(1+ Att,)) =
it [+ Atz)™ - 1],

By utilizing the inequality z+ 1 < e?* for

> 0, we conclude that

T,At

llensall < (etrrmarm —1)

= TZAt Tilntr — 1)_

The proof is complete.
IVV. NUMERICAL EXPERIMENTS

In this section, we conduct two numerical
examples to support and illustrate the results
presented in Sections Il and I11.

Example 1. (Global asymptotic stability
of the NSFD method). Consider the
continuous-time model (1) with the following
set of parameters

TABLE 1. PARAMETERS USER IN NUMERICAL
SIMULATION

[ & [ M Nz ¥i ¥z
001 08 001 025 035 06 08

In this case, the VEP is given by
Ey =(23.6026, 16.1325, 40.2649), which is
globally asymptotically stable. We will use
@(At) = 1 — e for the NSFD method (2),
which satisfies the conditions (4) and (7).
Numerical approximations generated by the
NSFD method (2) are depicted in Figures 1-3.

It is clear that the GAS of the unique VEP is
shown. This supports the results constructed in
Section II.
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Example 2. (Error control based on step
doubling). In this example, we will use the step
doubling strategy to control errors of the NSFD
method (2). Let us denote by y, the solution
using two steps of step size At starting from y,,_,
and let y;, be the solution taking one step of size
2At from y,,_,. Then, we have [1]

|Yn = ¥al
Y(t) =yl = =
Consequently the local truncation error

satisfies [1, 2, 7]:

y(tn) —Vn
At

|yn _%l
20t

T =

|Tn(At)| = ‘

Figure 1. The phase spaces produced by applying the

NSFD method with the step size At = 2.0 .
Given an error tolerance €. If r < €, we

accept y,, as an approximation for y(t,) and
continue to use the step size At in the next step.
If r > ¢, then the current step is repeated with a

new step size h,,.,, given by [1,2, 7]:

€
hnew = 09 ;

Next, let us consider the continuous-time
model (1) on the interval [0, 1] with the set of
parameters in Table 1. We employ the NSFD
method with the step doubling and record errors
with respect to the Euclidean norm, which are
computed at t = 1. Note that we admit the
) ) approximation generated by the classical four-
Figure 2. The phase spaces prodqced by using the stage explicit Runge-Kutta (RK4) method [1]

NSFD method with the step size At = 1.0 using the step size of 1076 as a
benchmark/reference solution. The obtained
results are reported in Table 2, where:

* N is the number of iterations used.

* At and At ., are the minimum
and maximum step sizes selected, respectively.

« err is the error produced by applying the
NSFD method with the step doubling.

serr(At,n), err(At,,q,), err(At,) are the
errors corresponding to the step sizes At,,in,
At,, . and At,, = 1/N, respectively.

It is clear that the results shown in Table 2 is
evidence supporting the theoretical assertions

Figure 3. The phase spaces generated by employing ~ constructed in Sections Il and I11.
the NSFD method with the step size At = 0.1
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TABLE 2. NUMERICAL SIMULATION USING STEP

DOUBLING
€ N Atpin | Atmax err | err(Aty
10-1| 28 0.0112 | 0.0451 | 0.0734 | 0.1320
10-2 282 | 0.0027 | 0.0045 | 0.0068 | 0.0134
_ 1.8645 | 45057 | 6.6939
3
1077 2829 | 0% | 450571 00999 | 00013
_ 2.0890 | 45057 | 6.6881 | 1.3375
4
1077 28297 | . '505 | 6-005 | e-005 | e-004
1o-5| 28298 | 1.2301 | 45057 | 6.6878 | 1.3375
0 6-006 | e-006 | e-006 | e-005
Lo-¢| 28272 | 59011 | 45087 | 6.7170 | 1.3352
22 6-008 | e-007 | e-007 | e-006

V. CONCLUDING REMARKS AND DISCUSSIONS

We have conducted a new study for global
dynamics and numerical simulation of a discrete-
time computer virus propagation model proposed
in [17]. By utilizing well-known results on
asymptotic stability of discrete-time dynamical
systems [10], we have established the global
asymptotic stability of the wunique viral
equilibrium point while only its local asymptotic
stability was analyzed in [17]. Moreover, we
have investigated the convergence and given an
error bound for the NSFD method (2). Then, the
step doubling strategy has been applied to control
errors.  Consequently, the accuracy of
approximations generated by the discrete-time
model is enhanced. The obtained results not only
improve the ones presented in [17] but also can
be useful to study reliable numerical methods for
mathematical models of computer viruses,
malware and rumors. Finally, the theoretical
insights have been illustrated through a series of
numerical experiments.

Our next objectives are to extend the present
approach and obtained results to study
mathematical models arising in real-world
situations. In particular, higher-order reliable
numerical methods for systems modeling the
spreading of computer viruses, malware and
rumors will be of special interest.
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va Thac s Toan trng dung nam 2015 tai Truong Dai’ hoc
Khoa hoc Ty nhién, Pai hoc Quoc gia Ha Noi; Tién si
Toén rng dung tai Truong Pai hoc Khoa hoc va Cong
nghé Ha N¢i, Vién Han 1am Khoa hoc va Cong nghé
Viét Nam vao nam 2021.

Hudng nghién ctru hién nay: Ly thuyét dinh tinh va phan
tich s6 cia phuong trinh vi phan; Cac phuong phap toan
hoc trong cong nghé thong tin.



