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Abstract— This work is devoted to conducting 

a new study for global dynamics and numerical 

simulation of a discrete-time computer virus 

propagation model, which was constructed in our 

recent work. By utilizing well-known results on 

asymptotic stability of discrete-time dynamical 

systems, we establish the global asymptotic 

stability of a unique viral equilibrium point, 

whereas only its local asymptotic stability was 

previously analyzed. After that, we investigate 

convergence and provide an error bound for the 

discrete-time model. Next, the step doubling 

strategy is applied to control errors. The result is 

that the accuracy of approximations generated by 

the discrete-time model is enhanced. The obtained 

results not only improve the ones constructed in 

the benchmark work, but also can be useful to 

study reliable numerical methods for 

mathematical models of malware.  Finally, we 

present two numerical experiments that support 

and illustrate the theoretical findings of this study. 

Tóm tắt— Bài báo đề xuất một nghiên cứu 

mới về động lực toàn cục và lời giải xấp xỉ cho 

một mô hình lan truyền virus máy tính với thời 

gian rời rạc. Bằng cách áp dụng các kết quả về sự 

ổn định tiệm cận của các hệ động lực rời rạc, 

nhóm tác giả thiết lập được tính chất ổn định tiệm 

cận toàn cục của điểm cân bằng dương duy nhất 

trong khi chỉ có tính chất ổn định tiệm cận địa 

phương của nó được thiết lập trước đó. Sau đó, 

nhóm tác giả phân tích sự hội tụ và đưa ra ước 

lượng sai số cho mô hình rời rạc. Tiếp theo, chiến 

lược gấp đôi bước lưới được áp dụng để kiểm soát 

sai số. Kết quả là độ chính xác của các lời giải xấp 

xỉ được nâng cao. Các kết quả thu được không 

những cải thiện nghiên cứu được đề xuất trước 

đây mà còn có thể mở rộng để xây dựng các 

phương pháp hiệu quả giải xấp xỉ các mô hình 

toán học mô tả sự lan truyền của các phần mềm 

độc hại. Cuối cùng, nhóm tác giả thực hiện các 

thử nghiệm số để minh họa và hỗ trợ cho các kết 

quả lý thuyết. 
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I. INTRODUCTION 

We start by considering a mathematical 

model of the spreading of computer viruses  

proposed  in [6] by Gan et al: 

𝑆̇ = 𝛾2 𝐼 + 𝜂2𝐸 − 𝜇𝑆 − 𝛽𝑆𝐼 − 𝛾1𝑆, 

    𝐼̇ = 𝛽𝑆𝐼 − 𝜇𝐼 − 𝛾1𝐼 − 𝛾2𝐼 + 𝜂1𝐸,      (1)   

𝐸̇ = 𝛿 + 𝛾1 𝑆 + 𝛾1 𝐼 − 𝜇𝐸 − 𝜂1𝐸 − 𝜂2𝐸, 

where 𝑆(𝑡), 𝐼(𝑡) and E(t) are functions of time t,  

which denote the average numbers of 

susceptible, infected and external computers, 

respectively; all the parameters take positive 

values due to biological reasons. More details of 

the model (1) were presented in [6]. In [17], 

Pham and Hoang developed the Mickens’ 

methodology [14, 15, 16] to construct a 

nonstandard finite difference (NSFD) method for 

the continuous-time model (1), which has the 

following form: 

𝑆𝑛+1 − 𝑆𝑛

𝜑(Δ𝑡)
= 𝛾2𝐼𝑛 + 𝜂2𝐸𝑛 − 𝜇𝑆𝑛+1 

                      −𝛽𝑆𝑛+1𝐼𝑛 − 𝛾1𝑆𝑛+1, 

𝐼𝑛+1 − 𝐼𝑛

𝜑(Δ𝑡)
= 𝛽𝑆𝑛+1𝐼𝑛 − 𝜇𝐼𝑛+1 − 𝛾1𝐼𝑛+1 

    −𝛾2𝐼𝑛 + 𝜂1𝐸𝑛, 

𝐸𝑛+1 − 𝐸𝑛

𝜑(Δ𝑡)
= 𝛿 + 𝛾1𝑆𝑛+1 + 𝛾1𝐼𝑛+1 − 𝜇𝐸𝑛+1 
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                         −𝜂1𝐸𝑛 − 𝜂2𝐸𝑛.                        (2) 

In the system (2): 

• Δ𝑡 > 0 is the step size. 

• (𝑆𝑛, 𝐼𝑛, 𝐸𝑛)𝑇  (𝑛 = 1,2, … , 𝑀)  are 

the intended approximations for 

(𝑆(𝑡𝑛), 𝐼(𝑡𝑛), 𝐸(𝑡𝑛))𝑇 with 𝑡𝑛 = 𝑛Δ𝑡, 𝑛 =
0,1, … , 𝑀, respectively. 

• The denominator 𝜑(Δ𝑡)  is a  

positive function and satisfies 𝜑(Δ𝑡) =
 Δ𝑡 +  𝒪(∆𝑡2) as Δ𝑡 → 0. 

By rigorous mathematical analysis, it has 

been shown that the NSFD scheme (2) correctly 

maintain essential mathematical properties of the 

continuous-time model (1), which include the 

positivity and boundedness of the solutions, the 

set of equilibria and the local asymptotic stability 

(LAS) of a unique viral equilibrium (VEP) for all 

∆t > 0. Also, the theoretical assertions were 

supported by a series of illustrative numerical 

simulations [17]. 

While the global asymptotic stability (GAS) 

of the continuous-time model has been 

established in [6], only the LAS of the discrete-

time model (2) was proven in [17]; therefore, our 

first objective is to study the GAS of the VEP of 

(2). Here, it is important to remark that the 

analysis of global asymptotic stability (GAS) of 

dynamical systems is an important problem, 

which has numerous useful applications in both 

theory and practice contexts but it is generally 

not a straightforward task [5, 11]. In particular, 

the GAS problem of NSFD methods for 

dynamical systems governed by differential 

equations is very challenging. Recently, the GAS 

analysis of NSFD methods for some classes of 

mathematical models described by differential 

equations has been studied based on various 

approaches [3, 4, 8]. 

 Motivated by the aforementioned reasons,  

we first establish the complete GAS of the NSFD 

model (2) by applying well-known results on 

asymptotic stability of discrete-time dynamical 

systems, which were proposed in [10]. With the 

help of these stability results and suitable 

Lyapunov functions, the GAS analysis of the 

NSFD method (2) is reduced to studying the 

GAS of a one-dimensional dynamical system, in 

which the GAS problem is easily analyzed. As a 

result, the complete GAS of the unique VEP is 

established in Theorem 1, which improves the 

results presented in [17]. It is important to remark 

that the present approach has been used in [3, 8] 

to examine the GAS of computer virus 

propagation models. 

In the second part of the present work, we 

study the convergence and give error estimates 

for the NSFD method (2). More clearly, we prove 

that it is only convergent of order one and give 

an estimate for its global error (Theorem 2). For 

this reason, the step doubling strategy [1, 2, 7] is 

applied to control errors. Consequently, the 

accuracy of approximations is enhanced. It 

should be emphasized that improving accuracy 

of NSFD methods for differential equations is 

very important and has attracted special attention 

of many researchers [9, 12, 13]. By using the step 

doubling strategy for the NSFD method (2), the 

local truncation error is controlled and the step 

size is automatically selected. The most 

important thing is that the original NSFD method 

(2) is dynamically consistent with the time-

continuous model (1), so are the generated 

approximations. 

In the third part of the present work, the 

theoretical insights are supported by two 

numerical examples, which provide evidence 

supporting the findings of this work. 

This work is organized as follows: In Section 

II, we study the GAS of the NSFD model (2). 

Convergence and error estimates are investigated 

in Section III. A series of numerical experiments 

is reported in Section IV. Section V presents 

some concluding remarks and open problems. 

II. ANALYSIS OF GLOBAL ASYMPTOTIC STABILITY 

The aim of this section is to establish the 

GAS of the NSFD model (2). We recall that the 

explicit form of (2) is given by [17]: 

𝑆𝑛+1 =
𝑆𝑛 + 𝜑(∆𝑡)𝛾2𝐼𝑛 + 𝜑(∆𝑡)𝜂2𝐸𝑛

1 + (𝜇 + 𝛽𝐼𝑛 + 𝛾1)𝜑(∆𝑡)
, 

𝐼𝑛+1

=
(1 − 𝜑(∆𝑡)𝛾2)𝐼𝑛 + 𝜑(∆𝑡)𝛽𝑆𝑛+1𝐼𝑛 + 𝜑(∆𝑡)𝜂1𝐸𝑛

1 + (𝜇 + 𝛾1)𝜑(∆𝑡)
, 
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𝐸𝑛+1 =
𝜑(∆𝑡)𝛿 + 𝜑(∆𝑡)𝛾1(𝑆𝑛+1 + 𝐼𝑛+1)

1 + 𝜇𝜑(∆𝑡)

+
[1 − 𝜑(∆𝑡)(𝜂1 + 𝜂2)]𝐸𝑛

1 + 𝜇𝜑(∆𝑡)
     (3) 

From now on, we always assume that the 

following assumption holds for 𝜑(∆𝑡): 

       𝜑(∆𝑡) < {
1

𝛾2
,

1

𝜂1+𝜂2
} , ∀∆𝑡 > 0.                (4) 

This condition implies that the NSFD method 

(2) preserves the positivity, boundedness and 

LAS of the continuous-time model (1) for all 

finite step sizes ∆𝑡 > 0 [17]. We recall that the 

model (2) always possesses an unique VEP 𝐸𝑉
∗ =

(𝑆∗, 𝐼∗, 𝐸∗) given by: 

𝐸∗ =
𝛿(𝜇 + 𝛾1)

𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2)
, 

𝐼∗ =

=
𝛽𝑤 − (𝜇 + 𝛾1 + 𝛾2)

2𝛽

+
√[𝛽𝑤 − (𝜇 + 𝛾1 + 𝛾2)]2 + 4𝛽𝜂1 𝐸

∗

2𝛽
        (5) 

𝑆∗ =
𝛿

𝜇
− 𝐸∗ − 𝐼∗, 

Where: 

𝑤 =
𝛿(𝜂1 + 𝜂2)

𝜇(𝜇 + 𝛾1 + 𝜂1 + 𝜂2)
. 

Our main objective is to show the GAS of  

the VEP 𝐸𝑉
∗ . Let us denote 𝑁𝑛 ≔ 𝑆𝑛 + 𝐸𝑛 + 𝐼𝑛 

for n ≥ 0. Then, we represent the system (2) in a 

new form with the appearance of 𝑁𝑛: 

𝑁𝑛+1 − 𝑁𝑛

𝜑(Δ𝑡)
= 𝛿 − 𝜇𝑁𝑛+1, 

𝐸𝑛+1 − 𝐸𝑛

𝜑(Δ𝑡)
= 𝛿 + 𝛾1(𝑁𝑛+1 − 𝐸𝑛+1) − 𝜇𝐸𝑛+1

− 𝜂1𝐸𝑛 − 𝜂2𝐸𝑛, 

𝐼𝑛+1 − 𝐼𝑛

𝜑(Δ𝑡)
= 𝛽(𝑁𝑛+1 − 𝐸𝑛+1 − 𝐼𝑛+1)𝐼𝑛 − 𝜇𝐼𝑛+1

− 𝛾1𝐼𝑛+1 − 𝛾2𝐼𝑛 + 𝜂1𝐸𝑛.        (6) 

Note that the unique equilibrium 𝐸𝑉
∗  is now 

transformed to: 

𝐸𝑛𝑒𝑤
∗ = (𝑁∗, 𝐸∗, 𝐼∗) = (

𝛿

𝜇
, 𝐸∗, 𝐼∗). 

The following theorem shows the GAS of 

the unique equilibrium point of the discrete-

time model (2) while only its LAS was shown 

in [17] (Theorem 2 in [17]). 

Theorem 1. Assume that 𝜑(𝛥𝑡) is a function 

with the property that 

              𝜑(𝛥𝑡) <
2𝐼∗

𝜂1𝐸∗
 , ∀∆𝑡 > 0.             (7) 

Then, the viral equilibrium point 𝐸𝑛𝑒𝑤
∗  of the 

model (6) is globally asymptotically stable with 

respect to the set ℝ+
3 ≔ {(𝑁, 𝐸, 𝐼)|𝑁, 𝐸, 𝐼 ≥ 0}. 

Proof: The proof  consists of three sequential 

steps outlined as follows. 

Step 1: Reduce the 3-D system (6) to a 2-D 

system. Consider a Lyapunov candidate function 

defined by: 

𝑉1(𝑁𝑛, 𝐼𝑛, 𝐸𝑛) = (𝑁𝑛 − 𝑁∗)2 = (𝑁𝑛 −
𝛿

𝜇
)

2

. 

It follows from the first equation of (6) that: 

∆𝑉1(𝑁𝑛, 𝐸𝑛, 𝐼𝑛) ≔ 𝑉1(𝑁𝑛+1, 𝐼𝑛+1, 𝐸𝑛+1)

− 𝑉1(𝑁𝑛, 𝐼𝑛, 𝐸𝑛)

= (𝑁𝑛+1 − 𝑁∗)2 − (𝑁𝑛 − 𝑁∗)2

= (𝑁𝑛+1 + 𝑁𝑛 − 2𝑁∗)(𝑁𝑛+1

− 𝑁𝑛)

= −𝜙𝜇(2 + 𝜙𝜇)(𝑁𝑛+1 − 𝑁∗)2. 

This implies that ∆𝑉1  ≤  0  for all 

(𝑁𝑛,  𝐸𝑛, 𝐼𝑛) ∈  ℝ+
3  and ∆𝑉1 = 0 if and only if 𝑁𝑛 

= N∗. Consequently, if we denote by 𝐺1
∗  the 

largest positively invariant set contained in 𝐺1 ∶
= {(𝑁, 𝐸, 𝐼) ∈  ℝ+

3 |∆𝑉1(𝑁, 𝐸, 𝐼) =  0}, then 

𝐺1
∗ ≔ {(𝑁, 𝐸, 𝐼) ∈  ℝ+

3 |𝑁 = 𝑁∗}. 

By using Theorem 3.2 in [10], it is sufficient 

to show that 𝐸𝑛𝑒𝑤
∗  is 𝐺1

∗-globally asymptotically 

stable. Since 𝐺1
∗ is also a positively invariant set 

of (6), we only need to consider the following 

subsystem 

𝐸𝑛+1 − 𝐸𝑛

𝜑(Δ𝑡)
= 𝛿 + 𝛾1 (

𝛿

𝜇
− 𝐸𝑛+1) − 𝜇𝐸𝑛+1

− 𝜂1𝐸𝑛 − 𝜂2𝐸𝑛, 

𝐼𝑛+1 − 𝐼𝑛

𝜑(Δ𝑡)
= 𝛽 (

𝛿

𝜇
− 𝐸𝑛+1 − 𝐼𝑛+1) 𝐼𝑛 − 𝜇𝐼𝑛+1

− 𝛾1𝐼𝑛+1 − 𝛾2𝐼𝑛 + 𝜂1𝐸𝑛       (8) 
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on a feasible set, which is given by Ω ≔

{(𝐸, 𝐼) ∈ ℝ+
2 |𝐼 + 𝐸 ≤

𝛿

𝜇
}. 

Step 2: Reduce the 2-D system (8) to a 1-D 

system. Consider a Lyapunov function candidate 

given by: 

𝑉2(𝐸𝑛, 𝐼𝑛) = (𝐸𝑛 − 𝐸∗)2. 

Then, we deduce from the first equation of 

the system (8) that: 

∆𝑉2(𝐸𝑛, 𝐼𝑛):= 𝑉2(𝐸𝑛+1, 𝐼𝑛+1) − 𝑉2(𝐸𝑛, 𝐼𝑛) =
(𝐸𝑛+1 − 𝐸∗)2 − (𝐸𝑛 − 𝐸∗)2 = (𝐸𝑛+1 + 𝐸𝑛 −
2𝐸∗)(𝐸𝑛+1 − 𝐸𝑛) = −𝐴(2 − 𝐴)(𝐸𝑛 − 𝐸∗)2, 

Where:  

𝐴 ≔
𝜑(𝜇 + 𝜂1 + 𝜂2 + 𝛾1)

1 + 𝜑(𝛾1 + 𝜇)
[2

−
𝜑(𝜇 + 𝜂1 + 𝜂2 + 𝛾1)

1 + 𝜑(𝛾1 + 𝜇)
]. 

Hence, ∆𝑉2 ≤ 0  for all (𝐸𝑛, 𝐼𝑛) ∈ ℝ+
2  and 

∆𝑉2 = 0 if and only if 𝐸𝑛 = 𝐸∗. Consequently, 

the largest positively invariant set contained 

in 𝐺2 ∶= {(𝐸, 𝐼) ∈  ℝ+
2 |∆𝑉2(𝐸, 𝐼) =  0} is 

defined by:  
𝐺2

∗ ≔ {(𝐸, 𝐼) ∈  ℝ+
2 |𝐸 = 𝐸∗}. 

By using Theorem 3.2 in [10], we only need 

to prove that (𝐸∗, 𝐼∗)  is 𝐺2
∗ -globally 

asymptotically stable. Because 𝐺2
∗  is also a 

positively invariant set of (8), it is sufficient to 

analyze the following equation: 

𝐼𝑛+1 − 𝐼𝑛

𝜑(Δ𝑡)
= 𝛽 (

𝛿

𝜇
− 𝐸∗ − 𝐼𝑛+1) 𝐼𝑛 − 𝜇𝐼𝑛+1

− 𝛾1𝐼𝑛+1 − 𝛾2𝐼𝑛 + 𝜂1𝐸∗    (9) 

on a feasible set Ω∗ ≔ {𝐼 ∈ ℝ+ |𝐼 ≤
𝛿

𝜇
}. 

Step 3: Establish the GAS of the equation (9). 

We rewrite the equation (9) in the form: 

𝐼𝑛+1 = 𝐼𝑛 −
𝜑𝛽

1 + 𝜑𝛽𝐼𝑛 + 𝜑(𝜇 + 𝛾1)
(𝐼𝑛

− 𝐼−)(𝐼𝑛 − 𝐼+), 

where 𝐼+ = 𝐼∗ > 0  and 𝐼−  <  0  are two 

solutions of the quadratic equation: 

 

𝐼2 −
1

𝛽
[𝛽 (

𝛿

𝜇
− 𝐸∗ − 𝛾2) − (𝜇 + 𝛾1)] 𝐼

−
1

𝛽
𝜂1𝐸∗ = 0.                   (10) 

Consider a Lyapunov function candidate 

given by: 

𝑉3(𝐼𝑛) = (𝐼𝑛 − 𝐼∗)2. 

By using (10), it is easy to check that 

Δ𝑉3 = −𝐴1(2 − 𝐴1)(𝐼𝑛 − 𝐼−)(𝐼𝑛 − 𝐼∗)2. 

Where:  

𝐴1 =
𝜑𝛽(𝐼𝑛 − 𝐼−)

1 + 𝜑𝛽𝐼𝑛 + 𝜑(𝜇 + 𝛾1)
. 

Note that we deduce from (10) that 

𝐼− = −
𝜂1𝐸∗

𝛽𝐼∗
, 

which implies that if (7) holds, then 2 – 𝐴1  >  0. 
Hence, we conclude that ∆𝑉3  ≥  0 for all 𝐼𝑛  ≥
 0  and ∆𝑉3  = 0 if and only if 𝐼𝑛  =  𝐼∗ . 

Consequently, from the Lyapunov stability 

theory [5], we obtain the GAS of  𝐼∗.  

Now,  the GAS of  𝐸𝑛𝑒𝑤
∗  of the full model 

(6) is obtained by combining steps 1-3. The 

proof is complete. 

III. CONVERGENCE AND ERROR ESTIMATES 

In this section, we study convergence and 

give an error bound for the numerical method (2). 

Let 𝑦(𝑡) = ( 𝑆(𝑡), 𝐼(𝑡), 𝐸(𝑡))
𝑇

 be the exact 

solution of (1) 

  𝑦𝑛  = (𝑆𝑛, 𝐼𝑛, 𝐸𝑛)𝑇  be the approximate 

solution generated by (2), 𝑓(𝑦(𝑡)) and 𝑔(𝑦𝑛, Δ𝑡) 

be the right-hand sides of (1) and (3), 

respectively. Then, it can be easily verified that 

    𝑔(𝑦, 0) =  𝑦,
𝜕𝑔(𝑦, 0)

𝜕∆𝑡
= 𝑓(𝑦)           (11) 

Thanks to the boundedness of 𝑦(𝑡) and 𝑦𝑛 , 

we define: 

𝐶 ≔ sup
𝑡≥0

‖𝑦(𝑡)‖, D ≔ sup
𝑛≥0

‖𝑦𝑛‖,     

𝐶2 ≔ sup
𝑡≥0

‖𝑦′′(𝑡)‖, 

Ω𝐶𝐷 ≔ {y‖𝑦‖ ≤ max{C, D}}. 
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For each ∆𝑡∗ >  0, we denote: 

Ω𝐷 ≔ {(y, ∆t)|‖𝑦‖ ≤ D, 0 ≤ ∆t ≤ ∆t∗}, 

and 

𝜏1 ≔ max
𝑦∈Ω𝐶𝐷

‖
𝜕𝑓(𝑦)

𝜕𝑦
‖ , 

   𝜏2 ≔ max
(𝑦,∆𝑡)∈Ω𝐷

‖
𝜕2𝑔(𝑦, ∆𝑡)

𝜕∆𝑡2
‖ + 𝐶2.             (12) 

Theorem 2. (Convergence and global error). 

The NSFD method (2) is convergent of order one. 

Moreover, the following estimate is satisfied for 

n ≥ 0: 

‖𝑦(𝑡𝑛) − 𝑦𝑛‖ ≤
𝜏2∆𝑡

𝜏1

(𝑒𝜏1𝑡𝑛 − 1). 

Proof: First, let us denote 𝑒𝑛 =  𝑦(𝑡𝑛)– 𝑦𝑛. 
By using (2), (11) and the Taylor’s theorem, 

we obtain: 

𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛 + ∆𝑡) = 𝑦(𝑡𝑛) +

∆𝑡𝑓(𝑦(𝑡𝑛)) +
∆𝑡2

2
𝑦′′(𝜉𝑛), 

𝑦𝑛+1 = 𝑔(𝑦𝑛, ∆𝑡) = 𝑦𝑛 + ∆𝑡𝑓(𝑦𝑛) +
∆𝑡2

2

𝜕2𝑔

𝜕∆𝑡2
(𝑦𝑛, 𝜓𝑛), 

𝑓(𝑦(𝑡𝑛)) − 𝑓(𝑦𝑛) =
𝜕𝑓

𝜕𝑦
(𝜃𝑛)(𝑦(𝑡𝑛) − 𝑦𝑛), 

where 𝜉𝑛, 𝜓𝑛 ∈ (𝑡𝑛, 𝑡𝑛 + ∆𝑡)  and 𝜃𝑛  is a point 

between 𝑦(𝑡𝑛) and 𝑦𝑛. Therefore: 

𝑦(𝑡𝑛+1) − 𝑦𝑛+1 = (𝑦(𝑡𝑛) − 𝑦𝑛) +

∆𝑡(𝑓(𝑦(𝑡𝑛) − 𝑓(𝑦𝑛)) +
∆𝑡2

2
(𝑦′′(𝜉𝑛) −

𝜕2𝑔

𝜕∆𝑡2
(𝑦𝑛, 𝜓𝑛)) = (𝑦(𝑡𝑛) − 𝑦𝑛) +

Δ𝑡
𝜕𝑓

𝜕𝑦
(𝜃𝑛)(𝑦(𝑡𝑛) − 𝑦𝑛) +

∆𝑡2

2
(𝑦′′(𝜉𝑛) −

𝜕2𝑔

𝜕∆𝑡2
(𝑦𝑛, 𝜓𝑛)), 

which implies that  

‖𝑒𝑛+1‖ ≤ ‖𝑒𝑛‖ + ∆𝑡𝜏1‖𝑒𝑛‖ + 𝜏2∆𝑡2, 

where  𝜏1  and 𝜏2  are given by (12). By some 

simple algebraic manipulations, we have that 

‖𝑒𝑛+1‖ ≤ (1 + ∆𝑡𝜏1)𝑛+1‖𝑒0‖

+ 𝜏2∆𝑡2 ∑(1 + ∆𝑡𝜏1)𝑗.

𝑛

𝑗=0

 

Since ‖𝑒0‖ = 0 , the above estimate is 

simplified to 

‖𝑒𝑛+1‖ ≤ 𝜏2∆𝑡2 ∑ (1 + ∆𝑡𝜏1)𝑗 =𝑛
𝑗=0

𝜏2∆𝑡

𝜏1
[(1 + ∆𝑡𝜏1)𝑛+1 − 1].  

By utilizing the inequality 𝑧 + 1 ≤  𝑒𝑧  for 

𝑧 ≥  0, we conclude that 

‖𝑒𝑛+1‖ ≤
𝜏2∆𝑡

𝜏1

(𝑒(𝑛+1)∆𝑡𝜏1 − 1)

=
𝜏2∆𝑡

𝜏1

(𝑒𝜏1𝑡𝑛+1 − 1). 

The proof is complete. 

IV. NUMERICAL EXPERIMENTS 

In this section, we conduct two numerical 

examples to support and illustrate the results 

presented in Sections II and III. 

Example 1. (Global asymptotic stability 

of the NSFD method). Consider the 

continuous-time model (1) with the following 

set of  parameters 

TABLE 1. PARAMETERS USER IN NUMERICAL 

SIMULATION 

 

In this case, the VEP  is given by 

EV
∗ =(23.6026, 16.1325, 40.2649), which is 

globally asymptotically stable. We will use 

φ(∆t)  =  1 − e−∆t  for the NSFD method (2), 

which satisfies the conditions (4) and (7). 

Numerical approximations generated by the 

NSFD method (2) are depicted in Figures 1-3.  

It is clear that the GAS of the unique VEP is 

shown. This supports the results constructed in 

Section II. 
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Figure 1. The phase spaces produced by applying the 

NSFD method with the step size ∆𝑡 =  2.0 

 

Figure 2. The phase spaces produced by using the 

NSFD method with the step size ∆𝑡 =  1.0 

 

Figure 3. The phase spaces generated by employing 

the NSFD method with the step size ∆𝑡 =  0.1 

Example 2. (Error control based on step 

doubling). In this example, we will use the step 

doubling strategy to control errors of the NSFD 

method (2). Let us denote by yn  the solution 

using two steps of step size ∆𝑡 starting from 𝑦𝑛−2 

and let 𝑦𝑛̃ be the solution taking one step of size 

2∆t from 𝑦𝑛−2. Then, we have [1] 

|𝑦(𝑡𝑛) − 𝑦𝑛| ≈
|𝑦𝑛 − 𝑦𝑛̃|

2
. 

Consequently the local truncation error 

satisfies [1, 2, 7]: 

|𝜏𝑛(∆𝑡)| = |
𝑦(𝑡𝑛) − 𝑦𝑛

∆𝑡
| ≈ 𝑟 ≔

|𝑦𝑛 − 𝑦𝑛̃|

2∆𝑡
. 

Given an error tolerance 𝜖 . If 𝑟 ≤  𝜖 , we 

accept 𝑦𝑛  as an approximation for 𝑦(𝑡𝑛)  and 

continue to use the step size ∆𝑡 in the next step. 

If 𝑟 >  𝜖, then the current step is repeated with a 

new step size ℎ𝑛𝑒𝑤 given by [1,2 , 7]: 

ℎ𝑛𝑒𝑤 = 0.9
𝜖

𝜏
. 

Next, let us consider the continuous-time 

model (1) on the interval [0, 1] with the set of 

parameters in Table 1. We employ the NSFD 

method with the step doubling and record errors 

with respect to the Euclidean norm, which are 

computed at 𝑡 =  1 . Note that we admit the 

approximation generated by the classical four-

stage explicit Runge-Kutta (RK4) method [1] 

using the step size of 10−6  as a 

benchmark/reference solution. The obtained 

results are reported in Table 2, where: 

• N is the number of iterations used. 

• ∆𝑡𝑚𝑖𝑛 and ∆𝑡𝑚𝑎𝑥 are the  minimum 

and maximum step sizes selected, respectively. 

• err is the error produced by applying the 

NSFD method with the step doubling. 

• 𝑒𝑟𝑟(∆𝑡𝑚𝑖𝑛), 𝑒𝑟𝑟(∆𝑡𝑚𝑎𝑥), 𝑒𝑟𝑟(∆𝑡𝑛) are the 

errors corresponding to the step sizes ∆𝑡𝑚𝑖𝑛, 

∆𝑡𝑚𝑎𝑥 and ∆𝑡𝑛 = 1/𝑁, respectively. 

It is clear that the results shown in Table 2 is 

evidence supporting the theoretical assertions 

constructed in Sections II and III. 
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TABLE 2. NUMERICAL SIMULATION USING STEP 

DOUBLING 

𝝐 𝑵 ∆𝒕𝒎𝒊𝒏 ∆𝒕𝒎𝒂𝒙 𝒆𝒓𝒓 𝒆𝒓𝒓(∆𝒕𝑵) 

10−1 28 0.0112 0.0451 0.0734 0.1320 

10−2 282 0.0027 0.0045 0.0068 0.0134 

10−3 2829 
1.8645

e-004 

4.5057

e-004 

6.6939

-004 
0.0013 

10−4 28297 
2.0890

e-005 

4.5057

e-005 

6.6881

e-005 

1.3375

e-004 

10−5 
28298

0 

1.2301

e-006 

4.5057

e-006 

6.6878

e-006 

1.3375

e-005 

10−6 
28272

22 

5.9011

e-008 

4.5057

e-007 

6.7170

e-007 

1.3352

e-006 

V. CONCLUDING REMARKS AND DISCUSSIONS 

We have conducted a new study for global 

dynamics and numerical simulation of a discrete-

time computer virus propagation model proposed 

in [17]. By utilizing well-known results on 

asymptotic stability of discrete-time dynamical 

systems [10], we have established the global 

asymptotic stability of the unique viral 

equilibrium point while only its local asymptotic 

stability was analyzed in [17]. Moreover, we 

have investigated the convergence and given an 

error bound for the NSFD method (2). Then, the 

step doubling strategy has been applied to control 

errors. Consequently, the accuracy of 

approximations generated by the discrete-time 

model is enhanced. The obtained results not only 

improve the ones presented in [17] but also can 

be useful to study reliable numerical methods for 

mathematical models of computer viruses, 

malware and rumors. Finally, the theoretical 

insights have been illustrated through a series of 

numerical experiments. 

  Our next objectives are to extend the present 

approach and obtained results to study 

mathematical models arising in real-world 

situations. In particular, higher-order reliable 

numerical methods for systems modeling the 

spreading of computer viruses, malware and 

rumors will be of special interest. 
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