A new study for global dynamics and numerical simulation of a discrete-time computer virus propagation model

Truong Ha Hai, Pham Hoai Thu, Hoang Manh Tuan

Abstract—This work is devoted to conducting a new study for global dynamics and numerical simulation of a discrete-time computer virus propagation model, which was constructed in our recent work. By utilizing well-known results on asymptotic stability of discrete-time dynamical systems, we establish the global asymptotic stability of a unique viral equilibrium point, whereas only its local asymptotic stability was previously analyzed. After that, we investigate convergence and provide an error bound for the discrete-time model. Next, the step doubling strategy is applied to control errors. The result is that the accuracy of approximations generated by the discrete-time model is enhanced. The obtained results not only improve the ones constructed in the benchmark work but also can be useful to study reliable numerical methods for mathematical models of malware. Finally, we present two numerical experiments that support and illustrate the theoretical findings of this study.

Keywords—Global dynamics; numerical simulation; Lyapunov stability theory; computer viruses; NSFD methods; step doubling.

I. INTRODUCTION

We start by considering a mathematical model of the spreading of computer viruses proposed in [6] by Gan et al:

\[
\begin{align*}
\dot{S} &= \gamma_2 I + \eta_2 E - \mu S - \beta SI - \gamma_1 S, \\
\dot{I} &= \beta SI - \mu I - \gamma_1 I - \gamma_2 I + \eta_1 E, \\
\dot{E} &= \delta + \gamma_1 S + \gamma_1 I - \mu E - \eta_1 E - \eta_2 E,
\end{align*}
\]

where \(S(t), I(t) \) and \(E(t) \) are functions of time \(t \), which denote the average numbers of susceptible, infected and external computers, respectively; all the parameters take positive values due to biological reasons. More details of the model (1) were presented in [6]. In [17], Pham and Hoang developed the Mickens’ methodology [14, 15, 16] to construct a nonstandard finite difference (NSFD) method for the continuous-time model (1), which has the following form:

\[
\begin{align*}
\frac{S_{n+1} - S_n}{\varphi(\Delta t)} &= \gamma_2 I_n + \eta_2 E_n - \mu S_{n+1} \\
&\quad - \beta S_{n+1} I_n - \gamma_1 S_{n+1}, \\
\frac{I_{n+1} - I_n}{\varphi(\Delta t)} &= \beta S_{n+1} I_n - \mu I_{n+1} - \gamma_1 I_{n+1} \\
&\quad - \gamma_2 I_n + \eta_1 E_n, \\
\frac{E_{n+1} - E_n}{\varphi(\Delta t)} &= \delta + \gamma_1 S_{n+1} + \gamma_1 I_{n+1} - \mu E_{n+1}.
\end{align*}
\]

This manuscript is received on September 17, 2023. It is commented on October 13, 2023 and is accepted on November 27, 2023 by the first reviewer. It is commented on November 09, 2023 and is accepted on November 27, 2023 by the second reviewer.
\[-\eta_1 E_n - \eta_2 I_n. \] \hspace{1cm} (2)

In the system (2):

- \(\Delta t > 0 \) is the step size.
- \((S_n, I_n, E_n)^T \) \((n = 1, 2, \ldots, M)\) are the intended approximations for \((S(t_n), I(t_n), E(t_n))^T\) with \(t_n = n\Delta t, n = 0, 1, \ldots, M, \) respectively.

- The denominator \(\varphi(\Delta t) \) is a positive function and satisfies \(\varphi(\Delta t) = \Delta t + \mathcal{O}(\Delta t^2) \) as \(\Delta t \to 0. \)

By rigorous mathematical analysis, it has been shown that the NSFD scheme (2) correctly maintain essential mathematical properties of the continuous-time model (1), which include the positivity and boundedness of the solutions, the set of equilibria and the local asymptotic stability (LAS) of a unique viral equilibrium (VEP) for all \(\Delta t > 0. \) Also, the theoretical assertions were supported by a series of illustrative numerical simulations [17].

While the global asymptotic stability (GAS) of the continuous-time model has been established in [6], only the LAS of the discrete-time model (2) was proven in [17]; therefore, our first objective is to study the GAS of the VEP of (2). Here, it is important to remark that the analysis of global asymptotic stability (GAS) of dynamical systems is an important problem, which has numerous useful applications in both theory and practice contexts but it is generally not a straightforward task [5, 11]. In particular, the GAS problem of NSFD methods for dynamical systems governed by differential equations is very challenging. Recently, the GAS analysis of NSFD methods for some classes of mathematical models described by differential equations has been studied based on various approaches [3, 4, 8].

Motivated by the aforementioned reasons, we first establish the complete GAS of the NSFD model (2) by applying well-known results on asymptotic stability of discrete-time dynamical systems, which were proposed in [10]. With the help of these stability results and suitable Lyapunov functions, the GAS analysis of the NSFD method (2) is reduced to studying the GAS of a one-dimensional dynamical system, in which the GAS problem is easily analyzed. As a result, the complete GAS of the unique VEP is established in Theorem 1, which improves the results presented in [17]. It is important to remark that the present approach has been used in [3, 8] to examine the GAS of computer virus propagation models.

In the second part of the present work, we study the convergence and give error estimates for the NSFD method (2). More clearly, we prove that only convergent of order one and give an estimate for its global error (Theorem 2). For this reason, the step doubling strategy [1, 2, 7] is applied to control errors. Consequently, the accuracy of approximations is enhanced. It should be emphasized that improving accuracy of NSFD methods for differential equations is very important and has attracted special attention of many researchers [9, 12, 13]. By using the step doubling strategy for the NSFD method (2), the local truncation error is controlled and the step size is automatically selected. The most important thing is that the original NSFD method (2) is dynamically consistent with the time-continuous model (1), so are the generated approximations.

In the third part of the present work, the theoretical insights are supported by two numerical examples, which provide evidence supporting the findings of this work.

This work is organized as follows: In Section II, we study the GAS of the NSFD model (2). Convergence and error estimates are investigated in Section III. A series of numerical experiments is reported in Section IV. Section V presents some concluding remarks and open problems.

II. ANALYSIS OF GLOBAL ASYMPTOTIC STABILITY

The aim of this section is to establish the GAS of the NSFD model (2). We recall that the explicit form of (2) is given by [17]:

\[S_{n+1} = \frac{S_n + \varphi(\Delta t)\gamma_2 I_n + \varphi(\Delta t)\eta_2 E_n}{1 + (\mu + \beta I_n + \gamma_1)\varphi(\Delta t)}, \]

\[I_{n+1} = \frac{(1 - \varphi(\Delta t)\gamma_2)I_n + \varphi(\Delta t)\beta S_{n+1}I_n + \varphi(\Delta t)\eta_1 E_n}{1 + (\mu + \gamma_1)\varphi(\Delta t)}, \]
\[E_{n+1} = \frac{\varphi(\Delta t)\delta + \varphi(\Delta t)\gamma_1(S_{n+1} + I_{n+1})}{1 + \mu\varphi(\Delta t)} + \frac{[1 - \varphi(\Delta t)\eta_1 + \eta_2]E_n}{1 + \mu\varphi(\Delta t)} \]
\hspace{1cm} (3)

From now on, we always assume that the following assumption holds for \(\varphi(\Delta t) \):

\[\varphi(\Delta t) < \left\{ \frac{1}{\phi_2}, \frac{1}{\eta_1 + \eta_2} \right\}, \forall \Delta t > 0. \]
\hspace{1cm} (4)

This condition implies that the NSFD method (2) preserves the positivity, boundedness and LAS of the continuous-time model (1) for all finite step sizes \(\Delta t > 0 \) [17]. We recall that the model (2) always possesses an unique VEP \(E'_\psi = (S^*, I^*, E^*) \) given by:

\[E^* = \frac{\delta(\mu + \gamma_1)}{\mu(\mu + \gamma_1 + \eta_1 + \eta_2)}, \]

\[I^* = \frac{\beta w - (\mu + \gamma_1 + \gamma_2)}{2\beta} + \frac{\sqrt{[\beta w - (\mu + \gamma_1 + \gamma_2)]^2 + 4\beta \eta_1 E^*}}{2\beta}, \]
\hspace{1cm} (5)

Where:

\[w = \frac{\delta(\eta_1 + \eta_2)}{\mu(\mu + \gamma_1 + \eta_1 + \eta_2)}. \]

Our main objective is to show the GAS of the VEP \(E'_\psi \). Let us denote \(N_n := S_n + E_n + I_n \) for \(n \geq 0 \). Then, we represent the system (2) in a new form with the appearance of \(N_n \):

\[\frac{N_{n+1} - N_n}{\varphi(\Delta t)} = \delta - \mu N_{n+1}, \]

\[\frac{E_{n+1} - E_n}{\varphi(\Delta t)} = \delta + \gamma_1(N_{n+1} - E_{n+1}) - \mu E_{n+1} - \eta_1 E_n - \eta_2 E_n, \]

\[\frac{I_{n+1} - I_n}{\varphi(\Delta t)} = \beta(N_{n+1} - E_{n+1} - I_{n+1})I_n - \mu I_{n+1} - \gamma_1 I_{n+1} - \gamma_2 I_n + \eta_1 E_n. \]
\hspace{1cm} (6)

Note that the unique equilibrium \(E'_\psi \) is now transformed to:

\[E_{new} = (N^*, E^*, I^*) = \left(\frac{\delta}{\mu}, E^*, I^* \right). \]

The following theorem shows the GAS of the unique equilibrium point of the discrete-time model (2) while only its LAS was shown in [17] (Theorem 2 in [17]).

Theorem 1. Assume that \(\varphi(\Delta t) \) is a function with the property that

\[\varphi(\Delta t) < \frac{2\mu}{\eta_1 E^*}, \forall \Delta t > 0. \]
\hspace{1cm} (7)

Then, the viral equilibrium point \(E_{new}^* \) of the model (6) is globally asymptotically stable with respect to the set \(\mathbb{R}_+^3 := \{(N, E, I)|N, E, I \geq 0\} \).

Proof: The proof consists of three sequential steps outlined as follows.

Step 1: Reduce the 3-D system (6) to a 2-D system. Consider a Lyapunov candidate function defined by:

\[V_1(N, I, E) = (N - N^*)^2 = \left(N - \frac{\delta^2}{\mu} \right). \]

It follows from the first equation of (6) that:

\[\Delta V_1(N, E, I) = V_1(N_{n+1}, I_{n+1}, E_{n+1}) - V_1(N_n, I_n, E_n) = (N_{n+1} - N^*)^2 - (N_n - N^*)^2 \]

\[= (N_{n+1} + N_n - 2N^*)(N_{n+1} - N_n) \]

\[= -\phi_2(2 + \phi_2)(N_{n+1} - N^*). \]

This implies that \(\Delta V_1 \leq 0 \) for all \((N_n, E_n, I_n) \in \mathbb{R}_+^3 \) and \(\Delta V_1 = 0 \) if and only if \(N_n = N^* \). Consequently, if we denote by \(G^*_1 \) the largest positively invariant set contained in \(G^*_1 : \{(N, E, I) \in \mathbb{R}_+^3 | \Delta V_1(N, E, I) = 0\} \), then

\[G^*_1 := \{(N, E, I) \in \mathbb{R}_+^3 | N = N^*\}. \]

By using Theorem 3.2 in [10], it is sufficient to show that \(E_{new}^* \) is \(G^*_1 \)-globally asymptotically stable. Since \(G^*_1 \) is also a positively invariant set of (6), we only need to consider the following subsystem

\[\frac{E_{n+1} - E_n}{\varphi(\Delta t)} = \delta + \gamma_1 \left(\frac{\delta}{\mu} - E_{n+1} \right) - \mu E_{n+1} - \eta_1 E_n - \eta_2 E_n, \]

\[\frac{I_{n+1} - I_n}{\varphi(\Delta t)} = \beta \left(\frac{\delta}{\mu} - E_{n+1} - I_{n+1} \right)I_n - \mu I_{n+1} - \gamma_1 I_{n+1} - \gamma_2 I_n + \eta_1 E_n. \]
\hspace{1cm} (8)
on a feasible set, which is given by $\Omega := \{(E,I) \in \mathbb{R}^2_+ | I + E \leq \frac{\delta}{\mu}\}$.

Step 2: Reduce the 2-D system (8) to a 1-D system. Consider a Lyapunov function candidate given by:

$$V_2(E_n, I_n) = (E_n - E^*)^2.$$

Then, we deduce from the first equation of the system (8) that:

$$\Delta V_2(E_n, I_n) := V_2(E_{n+1}, I_{n+1}) - V_2(E_n, I_n) = (E_{n+1} - E^*)^2 - (E_n - E^*)^2 = (E_{n+1} + E_n - 2E^*)(E_{n+1} - E_n) = -A(2 - A)(E_n - E^*)^2,$$

Where:

$$A := \frac{\varphi(\mu + \eta_1 + \eta_2 + \gamma_1)}{1 + \varphi(\gamma_1 + \mu)} \left[2 - \frac{\varphi(\mu + \eta_1 + \eta_2 + \gamma_1)}{1 + \varphi(\gamma_1 + \mu)} \right].$$

Hence, $\Delta V_2 \leq 0$ for all $(E_n, I_n) \in \mathbb{R}^2_+$ and $\Delta V_2 = 0$ if and only if $E_n = E^*$. Consequently, the largest positively invariant set contained in $G_2 := \{(E, I) \in \mathbb{R}^2_+ | \Delta V_2(E, I) = 0\}$ is defined by:

$$G_2^* := \{(E, I) \in \mathbb{R}^2_+ | E = E^*\}.$$

By using Theorem 3.2 in [10], we only need to prove that (E^*, I^*) is G_2^*-globally asymptotically stable. Because G_2^* is also a positively invariant set of (8), it is sufficient to analyze the following equation:

$$\frac{l_{n+1} - l_n}{\varphi(\Delta t)} = \beta \left(\frac{\delta}{\mu} - E^* - l_{n+1} \right) l_n - \mu l_{n+1} - \gamma_2 l_{n+1} + \eta_1 E^*$$

on a feasible set $\Omega^* := \{l \in \mathbb{R}_+ | l \leq \frac{\delta}{\mu}\}$.

Step 3: Establish the GAS of the equation (9).

We rewrite the equation (9) in the form:

$$l_{n+1} = l_n - \frac{\varphi \beta}{1 + \varphi \beta l_n + \varphi(\mu + \gamma_1)} \left(l_n - I^- (l_n - I^+) \right),$$

where $I^+ > 0$ and $I^- < 0$ are two solutions of the quadratic equation:

$$I^2 - \frac{1}{\beta} \left[\beta \left(\frac{\delta}{\mu} - E^* - y_2 \right) - (\mu + y_1) \right] I - \frac{1}{\beta} \eta_1 E^* = 0.$$

Consider a Lyapunov function candidate given by:

$$V_3(I_n) = (I_n - I^-)^2.$$

By using (10), it is easy to check that

$$\Delta V_3 = -A_1(2 - A_1)(I_n - I^-)(I_n - I^*)^2.$$

Where:

$$A_1 = \frac{\varphi \beta (I_n - I^-)}{1 + \varphi \beta I_n + \varphi(\mu + y_1)}.$$

Note that we deduce from (10) that

$$I^- = -\frac{\eta_1 E^*}{\beta l^*},$$

which implies that if (7) holds, then $2 - A_1 > 0$. Hence, we conclude that $\Delta V_3 \geq 0$ for all $I_n \geq 0$ and $\Delta V_3 = 0$ if and only if $I_n = I^*$. Consequently, from the Lyapunov stability theory [5], we obtain the GAS of I^*.

Now, the GAS of E_{new} of the full model (6) is obtained by combining steps 1-3. The proof is complete.

III. CONVERGENCE AND ERROR ESTIMATES

In this section, we study convergence and give an error bound for the numerical method (2). Let $y(t) = \left(S(t), I(t), E(t)\right)^T$ be the exact solution of (1)

$$y_n = (S_n, I_n, E_n)^T$$

be the approximate solution generated by (2), $f(y(t))$ and $g(y_n, \Delta t)$ be the right-hand sides of (1) and (3), respectively. Then, it can be easily verified that

$$\frac{\partial g(y, 0)}{\partial \Delta t} = f(y)$$

Thanks to the boundedness of $y(t)$ and y_n, we define:

$$C := \sup_{t \geq 0} \|y(t)\|, \quad D := \sup_{n \geq 0} \|y_n\|,$$

$$C_2 := \sup_{t \geq 0} \|y''(t)\|,$$

$$\Omega_{CD} := \{y ||y|| \leq \max\{C, D\}\}.$$
For each $\Delta t^* > 0$, we denote:

$$
\Omega_D := \{(y, \Delta t) \mid \|y\| \leq D, 0 \leq \Delta t \leq \Delta t^*\},
$$

and

$$
\tau_1 := \max_{y \in \Omega_D} \left\| \frac{\partial f(y)}{\partial y} \right\|,
$$

$$
\tau_2 := \max_{(y, \Delta t) \in \Omega_D} \left\| \frac{\partial^2 g(y, \Delta t)}{\partial \Delta t^2} \right\| + C_2. \tag{12}
$$

Theorem 2. (Convergence and global error). The NSFD method (2) is convergent of order one. Moreover, the following estimate is satisfied for $n \geq 0$:

$$
\|y(t_n) - y_n\| \leq \frac{\tau_2 \Delta t}{\tau_1} (e^{\tau_1 \Delta t} - 1).
$$

Proof: First, let us denote $e_n = y(t_n) - y_n$. By using (2), (11) and the Taylor’s theorem, we obtain:

$$
y(t_{n+1}) = y(t_n + \Delta t) = y(t_n) + \Delta f(y(t_n)) + \frac{\Delta t^2}{2} y''(\xi_n),
$$

where $\xi_n \in (t_n, t_n + \Delta t)$ and θ_n is a point between $y(t_n)$ and y_n. Therefore:

$$
y(t_{n+1}) - y_n = (y(t_n) - y_n) + \Delta t f(y(t_n) - f(y(t_n)) + \frac{\Delta t^2}{2} \left(y''(\xi_n) - \frac{\partial^2 g}{\partial \Delta t^2}(y_n, \psi_n)\right) = (y(t_n) - y_n) + \Delta t \frac{\partial}{\partial y}(\theta_n)(y(t_n) - y_n) + \frac{\Delta t^2}{2} \left(y''(\xi_n) - \frac{\partial^2 g}{\partial \Delta t^2}(y_n, \psi_n)\right),
$$

which implies that

$$
\|e_{n+1}\| \leq \|e_n\| + \Delta t \tau_1 \|e_n\| + \tau_2 \Delta t^2,
$$

where τ_1 and τ_2 are given by (12). By some simple algebraic manipulations, we have that

$$
\|e_{n+1}\| \leq (1 + \Delta t \tau_1)^{n+1} \|e_0\| + \tau_2 \Delta t^2 \sum_{j=0}^{n} (1 + \Delta t \tau_1)^j.
$$

Since $\|e_0\| = 0$, the above estimate is simplified to

$$
\|e_{n+1}\| \leq \tau_2 \Delta t \delta \sum_{j=0}^{n} (1 + \Delta t \tau_1)^j = \frac{\tau_2 \Delta t}{\tau_1} [e^{(n+1)\Delta t \tau_1} - 1] = \frac{\tau_2 \Delta t}{\tau_1} (e^{\tau_1 \Delta t} - 1).
$$

The proof is complete.

IV. NUMERICAL EXPERIMENTS

In this section, we conduct two numerical examples to support and illustrate the results presented in Sections II and III.

Example 1. (Global asymptotic stability of the NSFD method). Consider the continuous-time model (1) with the following set of parameters.

Table 1. Parameters User in Numerical Simulation

<table>
<thead>
<tr>
<th>β</th>
<th>δ</th>
<th>μ</th>
<th>η_1</th>
<th>η_2</th>
<th>γ_1</th>
<th>γ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.8</td>
<td>0.01</td>
<td>0.25</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

In this case, the VEP is given by $E_{\nu}^* = (23.6026, 16.1325, 40.2649)$, which is globally asymptotically stable. We will use $\varphi(\Delta t) = 1 - e^{-\Delta t}$ for the NSFD method (2), which satisfies the conditions (4) and (7). Numerical approximations generated by the NSFD method (2) are depicted in Figures 1-3.

It is clear that the GAS of the unique VEP is shown. This supports the results constructed in Section II.
Example 2. (Error control based on step doubling). In this example, we will use the step doubling strategy to control errors of the NSFD method (2). Let us denote by y_n the solution using two steps of step size Δt starting from y_{n-2} and let \bar{y}_n be the solution taking one step of size $2\Delta t$ from y_{n-2}. Then, we have \[|y(t_n) - y_n| \approx \frac{|y_n - \bar{y}_n|}{2|\Delta t|}, \]

Consequently the local truncation error satisfies \[|\tau_n(\Delta t)| = \frac{|y(t_n) - y_n|}{\Delta t} \approx r := \frac{|y_n - \bar{y}_n|}{2\Delta t}. \]

Given an error tolerance ϵ. If $r \leq \epsilon$, we accept y_n as an approximation for $y(t_n)$ and continue to use the step size Δt in the next step. If $r > \epsilon$, then the current step is repeated with a new step size h_{new} given by \[h_{\text{new}} = 0.9 \frac{\epsilon}{r}. \]

Next, let us consider the continuous-time model (1) on the interval $[0, 1]$ with the set of parameters in Table 1. We employ the NSFD method with the step doubling and record errors with respect to the Euclidean norm, which are computed at $t = 1$. Note that we admit the approximation generated by the classical four-stage explicit Runge-Kutta (RK4) method \[[1] \]

using the step size of 10^{-6} as a benchmark/reference solution. The obtained results are reported in Table 2, where:

- N is the number of iterations used.
- Δt_{min} and Δt_{max} are the minimum and maximum step sizes selected, respectively.
- err is the error produced by applying the NSFD method with the step doubling.
- $err(\Delta t_{\text{min}}), err(\Delta t_{\text{max}}), err(\Delta t_n)$ are the errors corresponding to the step sizes Δt_{min}, Δt_{max} and $\Delta t_n = 1/N$, respectively.

It is clear that the results shown in Table 2 is evidence supporting the theoretical assertions constructed in Sections II and III.
TABLE 2. NUMERICAL SIMULATION USING STEP DOUBLING

<table>
<thead>
<tr>
<th>ϵ</th>
<th>N</th>
<th>Δt_{min}</th>
<th>Δt_{max}</th>
<th>err</th>
<th>$\text{err}(\Delta t_N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>28</td>
<td>0.0112</td>
<td>0.0451</td>
<td>0.0734</td>
<td>0.1320</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>282</td>
<td>0.0027</td>
<td>0.0045</td>
<td>0.0068</td>
<td>0.0134</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>2829</td>
<td>1.8645 e-004</td>
<td>4.5057 e-004</td>
<td>6.6939 -004</td>
<td>0.0013</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>28297</td>
<td>2.0890 e-005</td>
<td>4.5057 e-005</td>
<td>6.6881 e-005</td>
<td>1.3375 e-004</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>28298</td>
<td>1.2301 e-006</td>
<td>4.5057 e-006</td>
<td>6.6878 e-006</td>
<td>1.3375 e-005</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>28272</td>
<td>5.9011 e-008</td>
<td>4.5057 e-007</td>
<td>6.7170 e-007</td>
<td>1.3352 e-006</td>
</tr>
</tbody>
</table>

V. CONCLUDING REMARKS AND DISCUSSIONS

We have conducted a new study for global dynamics and numerical simulation of a discrete-time computer virus propagation model proposed in [17]. By utilizing well-known results on asymptotic stability of discrete-time dynamical systems [10], we have established the global asymptotic stability of the unique viral equilibrium point while only its local asymptotic stability was analyzed in [17]. Moreover, we have investigated the convergence and given an error bound for the NSFD method (2). Then, the step doubling strategy has been applied to control errors. Consequently, the accuracy of approximations generated by the discrete-time model is enhanced. The obtained results not only improve the ones presented in [17] but also can be useful to study reliable numerical methods for mathematical models of computer viruses, malware and rumors. Finally, the theoretical insights have been illustrated through a series of numerical experiments.

Our next objectives are to extend the present approach and obtained results to study mathematical models arising in real-world situations. In particular, higher-order reliable numerical methods for systems modeling the spreading of computer viruses, malware and rumors will be of special interest.

REFERENCES

ABOUT THE AUTHORS

Truong Ha Hai
Workplace: Department of Basic Sciences, Thai Nguyen University of Information and Communication Technology.
Email: thhai@ictu.edu.vn
Education: Received the Engineer degree in Information Technology in 1997 from Hanoi University of Technology; the MSc degree in Information Technology in 1999 from Vietnam National University and the PhD degree in Computational Mathematics from Institute of Information Technology, Vietnam Academy of Science and Technology in 2013.
Recent research interests: Qualitative theory and numerical analysis of differential equations; Mathematical methods in information technology.

Pham Hoai Thu
Workplace: People’s Security Academy.
Email: phamthuhvan@gmail.com
Education: Received the M.S in Information Systems from Posts and Telecommunications Institute of Technology in 2019.
Recent research interests: Mathematical foundations of informatics.

Hoang Manh Tuan
Workplace: Department of Mathematics, FPT University.
Email: hmtuan01121990@gmail.com
Education: Received the BSc degree in Mathematics in 2012 and the MSc degree in Applied Mathematics in 2015 from VNU University of Science; the PhD degree in Applied Mathematics from Graduate University of Science and Technology, Vietnam Academy of Science and Technology in 2021.
Recent research interests: Qualitative theory and numerical analysis of differential equations; Mathematical methods in information technology.