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Abstract—This study proposes a
hyperparameter optimization method for one-
dimensional convolutional neural network using
the Particle Swarm Optimization (PSO) algorithm
based on a Pareto multi-objective approach to
improve the performance of 10T attack detection
systems. Specifically, this study enhances the PSO
algorithm by introducing an automatic
termination criterion for optimization loops and
proposes an early stopping mechanism, along with
the optimization of the early stopping patience
during the 1D-CNN model training process,
thereby reducing computational costs and aligning
with  the  resource-constrained  hardware
conditions of 10T. Additionally, a multi-objective
optimization function is developed to balance
detection performance and resource efficiency by
combining validation accuracy with the 1D-CNN's
execution time. The proposed method is evaluated
on the Edge-l110Tset dataset. Experimental results
demonstrate that the optimized model reduces
execution time by 48-63% compared to the
baseline model while maintaining high accuracy
(over 94%). This research not only provides a
practical solution for loT security but also
pioneers a novel approach to integrating
evolutionary algorithms into adaptive deep
learning systems and introduces a flexible method
for hardware-constrained devices.

T6m tit—Nghién ciru nay dé xuat mét phuwong
phap t6i wu héa siéu tham sé cho mang no-ron tich
chap mégt chiéu (ID-CNN) bing thuit toan téi wu
bay dan (Particle Swarm Optimization - PSO), dua
trén cach tiép can da muc tiéu Pareto, nham nang
cao higu qua cia cac hé théng phat hi¢n tan cong
I0T. Cu thé, nghién ciru da cai tién thuat toan PSO
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bing viéc dé xuit mét tiéu chi dirng tw déng cho cac
vong lip téi wu héa va dé xuét co ché dirng som,
cling véi viéc toi wu ngudng dirng sém cho qué trinh
huan luyén mé hinh 1D-CNN, gitp giam chi phi
tinh toan va phu hep véi diéu kién tai nguyén phan
citng han ché caa 10T. Ngoai ra, mdt ham t6i wu da
muc tiéu da dwoc xay dung, két hep giira dé chinh
xac trén tap dir liéu xac thuc va thoi gian thuc thi
ciia mé hinh 1D-CNN, dam bao can bing giira hiéu
suét phat hién va hiéu qua tai nguyén. Phwong phap
dé xuat dwoc danh gia trén b dir ligu Edge-110Tset.
Két qua thuc nghiém cho thay mé hinh dé xuit gitp
giam thoi gian thuc thi tir 48-63% so véi mo hinh
gbc ma van duy tri dd chinh xac cao (trén 94%).
Nghién ciru khdng chi cung cip mat giai phap thuc
tién cho vén dé bao mat thiét bi loT ma con mé ra
hwéng tiép can méi trong viéc tich hep cac thuat
toan tién hoa vao cac hé théng hoc sau tw déng va
gi6i thigu mat phwong phap linh hoat cho céc thiét
bi c6 rang bugc vé phan cing.

Keywords— 10T attack detection, one-dimensional
convolutional neural network (1D-CNN), particle swarm
optimization (PSO), hyperparameter optimization (HPO),
multi-objective optimization.

Tir khéa—Phat hign tan céng loT, mang no-ron tich
chdp mgt chiéu, toi wu bay dan, toi wu héa siéu tham so, toi
wu héa da muc tiéu.

|. INTRODUCTION

The Internet of Things (loT) has
revolutionized industries, healthcare, and smart
cities through seamless connectivity and
automation. However, the exponential growth
of 10T devices projected to exceed 30 billion by
2030, according to Vailshery's research [1], has
introduced unprecedented security challenges.
These resource-constrained devices, limited in
energy, memory, and processing power, often
become prime targets for Distributed Denial-
of-Service (DDoS) attacks, polymorphic
malware, and zero-day vulnerability exploits.
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Traditional signature-based or rule-defined
Intrusion Detection Systems (IDS) prove
increasingly ineffective against evolving,
sophisticated threats [2]. This underscores an
urgent demand for automated, adaptive, and
resource-efficient solutions, particularly within
the context of loT hardware's inherent
computational limitations.

Figure 1 illustrates the exponential growth of
global loT connections from 2022 to 2033,
highlighting both their transformative potential
and the accompanying security risks [1]. The
growing reliance on 10T in critical infrastructure
systems—such as smart grids and industrial
monitoring systems—renders their protection a
matter of critical importance.

Figure 1. Number of 10T connections worldwide
from 2022 to 2023, with forecasts from 2024 to 2033

In this context, deep learning has emerged
as a promising tool for 10T attack detection due
to its capacity to automatically extract features
from raw data. CNN deep learning models are
not only suitable for image data, but also
adapted to process sequence and stream data in
IDS for 10T, which can enhance the detection of
zero-day attacks and improve system stability.
Combining CNN  with configuration
optimization methods, especially metaheuristic
algorithms, is becoming a potential research
direction to further improve detection efficiency
and reduce computational costs in practical 10T
systems [5, 14].

Among CNN models, one-dimensional
convolutional neural networks (1D-CNN) have
demonstrated exceptional advantages in
processing time-series data, such as network
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traffic, by employing sliding filters to detect
anomalous patterns without requiring manual
feature engineering [3]. However, the
performance of 1D-CNN heavily relies on
hyperparameter selection (e.g., number of
layers, filter size, learning rate). Optimizing
these parameters is typically performed
manually or via grid search, which is time-
consuming and inefficient in high-dimensional
parameter spaces.

While studies have proposed evolutionary
algorithms,  such as  Particle ~ Swarm
Optimization, to automate hyperparameter
tuning, most fail to account for the resource-
constrained hardware environments during
model training, resulting in high computational
costs and impractical real-world deployment. To
address the dual challenge of balancing
performance  optimization and  resource
efficiency, the  Pareto  multi-objective
optimization principle serves as a strategic
framework. This approach identifies a Pareto
optimal solution set (Pareto Front), where no
objective (e.g., accuracy) can be improved
without degrading another (e.g., processing
time). Building on foundational studies [4, 5] in
multi-objective hyperparameter optimization for
CNNs, this research advances a dynamically
balanced solution that harmonizes model
efficacy with practical deployability in resource-
limited loT ecosystems.

This paper focuses on optimizing 1D-CNN
configurations for 10T attack detection through
three primary contributions:

- Enhancing the PSO algorithm by introducing
adaptive termination criteria for optimization
loops, reducing computational overhead while
maintaining convergence efficiency.

- Integrating an early-stopping mechanism
with  optimized early-stopping  patience
hyperparameter tuning to minimize training time
without compromising detection accuracy.

- Proposing a novel multi-objective
optimization function that jointly maximizes
classification  accuracy and  minimizes
execution time, ensuring models are both high-
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performing and  resource-efficient  for
deployment on edge devices.

The structure of our paper is as follows:
Section Il - Presents a review of related works.
Section 111 - Covers the theoretical background.
Section 1V - Details the proposed method.
Section V - Describes the experimental setup
and evaluation of the approach. Section VI -
Concludes the paper and suggests future
research directions.

Il. RELATED WORKS

Kilichev et al. [6] presented a study focused
on optimizing nine hyperparameters of 1D-CNN
using Genetic Algorithms (GA) and Particle
Swarm Optimization for network intrusion
detection, with potential applications in loT. The
experiments utilized the UNSW-NB15, CIC-
IDS2017, and NSL-KDD datasets. GA and PSO
were employed to optimize parameters such as
the number of filters, kernel size, pooling size,
number of dense layers, dropout rate, learning
rate, batch size, and number of epochs. Both
algorithms  significantly enhanced model
performance, with GA achieving accuracies of
99.31%, 99.71%, and 99.63% across the three
datasets, while PSO attained 99.28%, 99.74%,
and 99.52%, respectively. When compared to
other CNN and hybrid models, the optimized
approach  demonstrates superior detection
capabilities. However, the study highlighted that
neither  optimization method universally
outperformed the other; instead, the efficacy of
GA and PSO was contingent on specific dataset
characteristics. The authors proposed future
research directions, including the exploration of
additional  optimization algorithms, multi-
objective optimization strategies, and validation
on new datasets.

El-Ghamry et al. [7] proposed a CNN-based
intrusion detection system optimized via
Particle Swarm Optimization for smart
agriculture - an loT application aimed at
mitigating cybersecurity risks posed by network
attacks. The study utilized the NSL-KDD
dataset to evaluate the performance of pre-
trained CNN architectures (VGG16, Xception,
Inception) following PSO-driven

hyperparameter tuning. PSO was employed to
optimize critical hyperparameters, including
dropout rate, early-stopping patience, the
number of frozen layers, learning rate, and the
number of epochs. The findings revealed that
the PSO-optimized models significantly
enhanced performance metrics, outperforming
their non-optimized counterparts. This research
underscores the potential of PSO in improving
intrusion detection capabilities within specific
l0T contexts, such as smart agriculture.

Kan et al. [8] introduced a 1D-CNN-based
method for detecting network intrusions in loT,
where hyperparameters are optimized using
Adaptive Particle Swarm Optimization (APSO),
an enhanced variant of PSO. APSO employs an
adaptively varying inertia weight based on the
fitness value, which balances exploration and
exploitation in the search space, thereby
addressing some limitations of traditional PSO.
The study utilized a real-world dataset from nine
0T devices, encompassing attack types such as
Ack, COMBO, Junk, Scan, Syn, TCP, UDP, and
UDPplain. The fitness function was defined as
the cross-entropy loss on the validation set after
the initial training iteration of the CNN. The
results demonstrated that the APSO-CNN model
outperformed traditional methods such as SVM,
FNN, and manually configured CNN (R-CNN)
across all five evaluation metrics. However, the
optimization process of APSO can be time-
consuming; therefore, the authors suggested
future research directions including improving
the optimization algorithm and reducing
computational complexity.

Bahaa et al. [9] proposed a hybrid
optimization algorithm, combining Adaptive
Particle Swarm Optimization (APSO) and Whale
Optimization Algorithm (WOA), termed APSO-
WOA, to optimize hyperparameters of 1D-CNN
for detecting attacks in loT networks. The
APSO-WOA  algorithm optimizes 10
hyperparameters, including the number of filters,
kernel size, activation function, dropout rate,
number of neurons in the fully connected layers,
batch size and learning rate, with the fitness
function defined as the cross-entropy loss. The
method was evaluated on the N-BaloT dataset,
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comprising 115 features, and compared against
models such as APSO-CNN, SVM, and FNN
(Feedforward Neural Network). Experimental
results demonstrated that APSO-WOA-CNN
improved accuracy by 1.25% and precision by
1% compared to APSO-CNN, while
significantly outperforming the other methods,
confirming the effectiveness of the approach in
detecting a diverse range of loT attacks.
Nevertheless, the optimization process still
requires considerable computational time. Future
research directions include incorporating other
optimization algorithms (e.g., ant colony
optimization, genetic algorithms) to enhance
computational efficiency, as well as integrating
data preprocessing techniques to select the most
effective features.

Yang et al. [10] proposed an intrusion
detection system (IDS) leveraging transfer
learning and ensemble learning, utilizing CNN
models with hyperparameters optimized via
Particle Swarm Optimization. The optimized
hyperparameters include the number of epochs,
batch size, early-stopping patience, learning
rate, dropout rate, and number of frozen layers.
The study employed two datasets: Car-Hacking
and CICIDS2017, with hyperparameter tuning
primarily focused on CICIDS2017, as the
default model configuration already achieved
near-perfect accuracy (approximately 100%) on
the Car-Hacking dataset. The proposed system
attained a detection rate and F1-score exceeding
99.25% across both datasets, demonstrating its
effectiveness in identifying cyberattacks within
Internet of Vehicles (IoV) systems. However,
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the authors highlighted a critical limitation: the
system’s performance heavily depends on
dataset diversity and richness, which may
hinder its generalization in more complex, real-
world scenarios.

Aguerchi et al. [11] focused on developing a
novel method for breast cancer detection by
optimizing CNN models using the Particle Swarm
Optimization algorithm. The proposed PSOCNN
model comprises four primary stages and was
evaluated on the DDSM and MIAS datasets,
achieving impressive accuracy rates of 98.23%
(DDSM) and 97.98% (MIAS), surpassing
competing algorithms. However, the study
exhibits several limitations, including the lack of
testing on a broader range of diverse datasets, the
absence of comparisons regarding training time
and computational cost with traditional methods,
and the optimization being limited to a basic set of
hyperparameters without extending to other
critical parameters such as the number of epochs
and the number of convolutional layers.

In  summary, existing studies have
demonstrated the efficacy of PSO in optimizing
hyperparameters for 1D-CNN-based models.
However, these works face key limitations: (1)
they primarily focus on optimizing a limited
subset of hyperparameters; (2) they are restricted
to specific 10T datasets, limiting generalizability;
and (3) they do not address the Pareto multi-
objective optimization problem, which is critical
for balancing competing objectives like accuracy
and computational efficiency in resource-
constrained loT environments.
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Figure 2. The architecture of the employed 1D-CNN model
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111. BACKGROUND
A. 1D-CNN model

In this study, the one-dimensional
convolutional neural network (1D-CNN) was
selected as the primary model due to the
following advantages:

- Suitability for sequential data: Unlike 2D-
CNN (commonly used for image processing),
1D-CNN operates on unidimensional data. It
scans through sequential data to extract local
patterns, such as anomalous traffic signatures
within short time intervals.

- Computational efficiency: Compared to
2D-CNN, 1D-CNN have fewer parameters and
lower computational demands. For data of
sizeNxNand a filter of size KxK, the
computational ~ complexity of 2D-CNN
is O(N2K?), whereas for 1D-CNN, it reduces
to O(NK). This efficiency is critical for
deploying models on loT devices with
constrained processing power and memory.

- Automatic feature learning: 1D-CNN
automatically extract intricate features from
sequential data without relying on manually
feature extraction steps required in traditional
machine learning, thereby reducing human effort
and potential errors.

The 1D-CNN architecture used for
hyperparameter optimization in this work
follows a structure similar to that proposed by
Kilichev et al. [6]. The detailed architecture of
the 1D-CNN model is illustrated in Figure 2.

The model is built using a sequential
structure with two primary convolutional blocks.
Each block consists of a convolutional layer
(Conv1D) with ReLU activation, followed by a
max pooling layer (MaxPooling1D). Subsequent
to the convolutional blocks, a Dropout layer is
incorporated to mitigate overfitting. A Flatten
layer then transforms the multidimensional
output into a one-dimensional vector. The final
segment of the model includes multiple fully
connected (Dense) layers, each activated by
ReLU and succeeded by a Dropout layer. The
output layer employs a Softmax activation

function, making the architecture suitable for
multiclass classification tasks.

The model is configured with the Adam
optimizer and trained using the categorical cross-
entropy loss function.

B. Particle Swarm Optimization

The PSO algorithm is a metaheuristic
optimization technique developed by James
Kennedy and Russell Eberhart in 1995. Inspired
by the movement behavior of animal swarms in
nature, such as flocks of birds, schools of fish, or
other organisms, PSO simulates how individuals
(particles) navigate a search space by leveraging
their own experience and information from
neighboring particles to progress toward the
optimal solution. Designed to address complex
optimization problems, PSO efficiently explores
high-dimensional solution spaces without
relying on gradient-based methods.

Figure 3 illustrates the workflow of the PSO
algorithm.

Initialize population

Evaluate fitness

Update local best (pbest) and
global best (gbest)

Update velocity and position

Satisfy termination criteria?

Return the global
optimal solution

Figure 3. PSO algorithm flowchart

The PSO algorithm operates by maintaining
a population of particles, each representing a
potential solution to the optimization problem.
The search for the optimal solution involves the
following steps:
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Step 1: Initialize population

A swarm of particles is randomly generated
within the search space. Each particle is assigned
an initial position x; (where i denotes the particle
index) and an individual velocity v;.

Step 2: Evaluate fitness

Each particle’s quality is assessed using a
predefined fitness (objective) function, which
quantifies its suitability as a solution to the
optimization problem.

Step 3: Updating local best (pbest) and
global best (gbest)

After evaluating the fitness values, the local
best position (pbest;) of each particle is updated.
If the fitness of its current position (x;) surpasses
that of its previous pbest;, the local best is
updated as follows:

pbest; = x; 1)

Subsequently, the algorithm compares the
particle’s fitness with the current global best value
(gbest). If the particle’s fitness exceeds F(gbest),
where F(x) denotes the fitness function evaluated
at gbest, the global best is updated:

gbest = x; @)
Step 4: Update velocity and position

Each particle adjusts its velocity based on
two guiding factors:

(i) Personal Experience (pbest): The best
position the particle has individually achieved.

(i) Swarm Intelligence (gbest): The best
position discovered by any particle in the entire
population.

The new velocity is calculated using the
formula:

vi(Hl) =W * vl.(t) +cyx1y * (pbestl- —
xl.(t)) +c, *x1, * (gbest - xi(t)) 3)
where:

- w: Inertia weight, controlling the influence
of the previous velocity.

- c1,Co.  Acceleration  coefficients

for pbest and gbest, respectively.
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- 1y, 1,: Random values uniformly distributed
in [0, 1].
- vi(t): Velocity of particle i at iteration t.

- xi(t): Position of particle i at iteration t.
- pbest;: Personal best position of particle i.

- gbest: Global best position of the
swarm.

The position of particle i at the next iteration
t+1 is then updated using the following equation:
(t+1) _ xi(t) + vi(t+1) (4)

X

Step 5: Check termination criteria

The algorithm verifies whether termination
criteria—such as reaching the maximum
number of iterations or achieving a satisfactory
fitness value (convergence) - is met. If satisfied,
the algorithm terminates and returns the global
best solution gbest. Otherwise, it iterates back
to Step 2.

In this study, each particle in the PSO
algorithm represents a set of hyperparameters S,
and the population P encompasses all feasible
hyperparameter combinations. Our objective is
to identify the optimal hyperparameter
set S*€P that maximizes the performance of the
1D-CNN model.

Definition 1 — Population (Swarm)

The population P is defined as:

., Sn} (5)

where: Si (i =1..N) denotes a
hyperparameter set of the 1D-CNN model, and
N is the population size (number of particles).

P={Sy, S, ..

Definition 2 — Individual (Particle)

An individual S is defined as:

., SM} (6)

where: s; (i =1..M) represents a
hyperparameter value, and M is the number of
hyperparameters in the 1D-CNN model.

S={sy, s, ..

Definion 3 — Optimization Objective
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The objective of the optimization problem is
to find the optimal hyperparameter set S* that
satisfies:

S*=arg max F(S) (7)

where: S: A specific hyperparameter set, P:
The search space of all possible hyperparameter
sets, F(S): The fitness function evaluating the
1D-CNN model’s performance with
hyperparameter set S.

I11. PROPOSED METHOD
A. Overall workflow

In this study, we propose an integrated model
incorporating the Particle Swarm Optimization
(PSO) algorithm to automatically optimize
hyperparameters for a  one-dimensional
convolutional neural network (1D-CNN) to
address attack detection in 10T systems. This
comprehensive method is designed as a
sequential process, combining model training
with multi-objective optimization.

The process begins by initializing a
population of individuals, each representing a
distinct  hyperparameter set S.  These
hyperparameter configurations are utilized to
train and evaluate the 1D-CNN model on two
datasets: training data and validation data.

After training, the model is assessed based on
the fitness value of each hyperparameter set. The
PSO algorithm then updates the local best (pbest)
and the global best (gbest) using these evaluation
results. Concurrently, the velocity and position
of each individual are adjusted to guide the
search toward improved solutions.

This iterative cycle continues until
predefined termination criteria is met. If the
stopping condition is not satisfied, the process
resumes with training and updating new
hyperparameters. Otherwise, the optimal 1D-
CNN model, along with its corresponding
hyperparameter set S*, is obtained.

Finally, the optimized model is evaluated on
a test dataset to evaluate its effectiveness and
generalization capability.

Figure 4 illustrates the key steps in the 1D-CNN
training and PSO-based optimization process.

Initialize population: Each
individual is a hyperparameter set §

l
Train and Validate: Use 1D-CNN

— model with hyperparameter set S;

| Evaluate fitness ‘

|

Update local best (pbest)
and global best (gbest)

|

‘Update velocity and position|

Satisfy termination criteria?
Se——

Testing data

Optimized 1D-CNN
model with best
hyperparameter set $*

Final evaluate

[Yes]

Figure 4. Flowchart of the proposed PSO-based 1D-
CNN optimization method

B. Enhanced PSO for 1D-CNN optimization
algorithm

The following part presents Algorithm,
which integrates PSO  to  optimize
hyperparameters  for a  one-dimensional
convolutional neural network (1D-CNN). This
algorithm comprises two
phases: initialization and iterative optimization,
designed to systematically identify the optimal
hyperparameter configuration.

Algorithm 1: Hyperparameter optimization for
1D-CNN model using PSO

Input:
-N: Number of individuals in the population (a
set of hyperparameter configurations S).

-M: Number of hyperparameters in an
individual (dimensionality of the search space).

-hyperparameter_bounds: Search range for
each hyperparameter.

-w: Inertia weight, controlling the influence of
the previous velocity.
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-c1: Cognitive coefficient (personal), learning
from individual experience.

-c2: Social coefficient, learning from the
swarm.

-stopping_threshold: Minimum improvement
threshold.

-max_stagnation: Maximum number of
iterations without improvement.

Output:

gbest: The optimal hyperparameter configuration
S* for the 1D-CNN model.

# Initialization
1 |FORi=1toNDO

2 position[i] <« Random position of
individual i within hyperparameter_bounds

velocity[i] < Random velocity
pbest_position[i] «— NULL
pbest_fitness[i] «— NULL
END FOR
gbest_position < NULL
gbest_fitness «— NULL

© 0O N oo o b~ W

previous_gbest «— NULL

10 | no_improvement count «— 0
11 | iteration «— 0

# Optimization Process

12 | WHILE no_improvement_count <
max_stagnation DO

13| FORi=1toNDO

14 fitness «<— evaluate_fitness(position[i])
15 IF fitness > pbest_fitness[i]:

16 pbest_position[i] «— position][i]

17 pbest_fitness[i] « fitness

18 END IF

19 IF fitness > ghest_fitness:

20 gbest_position «— position[i]

21 gbest_fitness «— fitness|[i]

22 END IF

23 END FOR
24 FORi=1to NDO
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25 FORj=1to M DO

26 ry, r. «<— Random numbers in the range
[0, 1]
27 velocity[j][i] « w * velocity[j][i] +
¢, * ry * (pbest[i][j] — position[j][i]) +

[i]
[iD
]

position[j][i] -+

[
c, * Iy * (gbest[j] — position][j]

28 position[j][i] <«
velocity[j][i]

29 position[j][i] <«
hyperparameter_bounds[j])

30 END FOR
31| ENDFOR
32 IF previous_gbest is not NULL.:

clip(position[j][i],

33 improvement — «
previous_gbest

gbest fitness -

34 IF improvement <= stopping_threshold:

35 no_improvement_count —
no_improvement_count + 1

36 ELSE:

37 no_improvement count «— 0

38 END IF

39| ENDIF

40 | previous gbest < gbest fitness
41 iteration «— iteration + 1

42 | END WHILE

43 | RETURN gbest

Explanation of steps in the algorithm:
1. Initialization

- Initialize N particles with randomized
positions and  velocities  within  the
hyperparameter search space.

- Set coefficients c1 (cognitive acceleration),
c2 (social acceleration), and w (inertia weight) to

regulate particle velocity and movement
behavior.
- Establish initial pbest (personal best

position) and gbest (global best position).

- Initialize termination condition trackers and
iteration counters.
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2. Optimization Process

The algorithm iterates until meeting
termination criteria (e.g.,, no improvement),
comprising three phases:

2.1. Evaluate population

- Evaluate fitness: Evaluate the 1D-CNN
model’s performance using each particle’s
current hyperparameters.

- Update local best: Update pbest if the current
fitness exceeds the particle’s historical best.

- Update global best: Update gbest if the
current fitness outperforms the global best, while
resetting the stagnation counter.

2.2. Update population (velocity & position)

- Adjust particle velocity using inertial,
cognitive, and social components

- Update particle positions while enforcing
search space boundaries.

2.3. Check termination condition: Assess
fitness improvement and increment the stagnation
counter if no significant progress occurs.

3. Terminate and return output: Upon
meeting termination criteria, return gbest
(optimal hyperparameters S*) and the auto-saved
best model.

In the work of Kilichev et al. [6], the PSO
algorithm employs a fixed loop mechanism with
a predefined maximum number of iterations.
This approach generally leads to two main
limitations:

Q) Premature  termination  before
convergence, yielding suboptimal solutions.

(2)  Redundant post-convergence
iterations, wasting computational resources
(CPU/GPU time, energy).

To address these issues, we replace static
termination with an adaptive stopping criterion
combining that combines a minimum
improvement threshold with a maximum number
of consecutive iterations without improvement:

- Minimum  improvement threshold
(stopping threshold): This represents the
minimum fitness improvement required between

two successive iterations to be considered as
“progress”. In this study, it is set to 10, This
value was determined through experiments with
three threshold levels: 1073, 10~*va 10~° using the
dataset. The results demonstrate that a threshold
of 10 achieves an optimal balance between
convergence speed and accuracy. Compared to
1073, it enhances convergence speed, while
relative to 1073, it delivers comparable
performance with reduced computational time.

- Maximum stagnation iterations (max
stagnation): This allows the algorithm to
terminate if the global fitness (gbest) does not
significantly improve over a specified number
of consecutive iterations. In this model, it is set
to 3, based on an analysis balancing exploration
capability and computational efficiency, tested
with values of 2, 3, and 4 iterations. The
findings indicate that 3 iterations allow the
algorithm sufficient time to overcome local
noise and temporary stagnation, while
preventing unnecessary computational costs
and avoiding premature termination due to
random fluctuations.

These parameter values were derived from a
systematic study evaluating six key criteria:
convergence speed, improvement magnitude,
noise resistance, stability, avoidance of local
optima, and computational efficiency. The
results confirm that a threshold of 10
combined with a stagnation limit of 3 iterations
optimizes the PSO algorithm’s performance,
ensuring accuracy, efficiency, and robustness
against noise.

This adaptive stopping mechanism offers
several important benefits:

(1) Computational efficiency: Eliminates
redundant post-convergence iterations.

(2) Overfitting prevention: Limits excessive
optimization that may degrade model
generalizability.

(3) Dynamic adaptation: Self-adjusts to
diverse search spaces by monitoring real-time
optimization trends rather than relying on fixed
iteration counts.
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C. Hyperparameter optimization

Based on related research results mentioned
above, in this study, we propose a set of
hyperparameters S, to be optimized for the 1D-
CNN model, defined as follows:

S= {Sl, S2, S3, S4, Ss, Se, S7, S8, S9, Slo} (8)
where:

- si: Number of filters - determines the
model’s feature extraction capability.

- s2: Kernel size - influences the local

analysis scope of the data.

- s3: Pooling size - affects the degree of
feature information compression.

- s4: Number of dense layers - governs the
depth of high-level feature learning.

- ss: Number of neurons in dense layers -
impacts nonlinear representation capacity.

- se: Dropout rate - controls regularization
strength to prevent overfitting.

- s7: Learning rate - adjusts the convergence
speed of the learning process.

- ss: Batch size - influences training stability
and speed.

- so: Number of epochs - determines the total
learning duration.

- s10: Early-stopping patience - regulates the
optimal stopping point.

This study integrates an early-stopping
mechanism into the 1D-CNN model, a
significant enhancement compared to the
original approach by Kilichev et al. [6]. The
mechanism is designed to automatically halt
training when performance plateaus after a
predefined number of epochs, thereby mitigating
overfitting and optimizing training time.

Furthermore, our research incorporates
early-stopping patience into the list of
hyperparameters optimized via the PSO

algorithm. This allows the 1D-CNN model to
automatically adjust the maximum waiting
epochs before termination (e.g., 5, 10, or 15
epochs) based on data characteristics and
convergence process.
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The early-stopping mechanism is configured
with several critical parameters, including
monitor and mode. For the monitor parameter,
the study employs ‘val _accuracy' to track
validation accuracy. Correspondingly, the mode
parameter is set to 'max’ (training stops when
accuracy ceases to improve).

Table | presents the list of hyperparameters
optimized for the 1D-CNN model, along with
their respective value ranges.

TABLE I. RANGE OF OPTIMIZED
HYPERPARAMETER VALUES
Symbols Hyperparamter Range
St Number of filters [16, 32, 64]
S2 Kernel size [3,5,7]
S3 Pooling size (2,5)
Number of dense
S4 layers (1.3)
S Number of neurons in [128, 256, 512]
5 dense layers s
Se Dropout rate (0.1,0.5)
S7 Learning rate (1075,1072)
. [32, 64, 128,
Ss Batch size 256, 512]
S9 Number of epochs (20, 50)
Early-stopping
S10 patience (5, 10)
Unlike the approach in [6], we selectively
narrow the value domains of certain

hyperparameters. Combined with PSO’s velocity
update mechanism, this strategy maintains
effective  exploration while filtering out
infeasible configurations, reducing overfitting
risks and computational waste. This narrowing
reflects domain knowledge-driven design,
balancing model capacity with the resource
constraints of 10T systems.

The proposed hyperparameter, early-
stopping patience (siw0), has its value range
established through a series of preliminary
experiments conducted on the dataset prior to the
main model improvement phase. We observed
that patience values smaller than 5 epochs often
result in premature stopping, whereas values
exceeding 10 epochs fail to provide significant
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accuracy improvements while unnecessarily
prolonging training time.

The findings demonstrate that a patience
range of 5-10 epochs not only aligns with the
convergence properties of the PSO algorithm but
also effectively supports the learning capacity of
the 1D-CNN model on 10T data. This ensures the
model is afforded sufficient time to capture
critical patterns without falling into overfitting or
squandering computational resources.

In the problem of optimizing a 1D-CNN
model for loT attack detection, designing a
mechanism to map particle positions to model
hyperparameters plays a decisive role in the
effectiveness of the PSO algorithm. Since PSO
typically operates in a continuous space, while
many 1D-CNN hyperparameters require discrete
or integer values, a suitable conversion
mechanism is essential. This mapping process
defines the search space S—the set of feasible
1D-CNN configurations—enabling the PSO
algorithm to efficiently explore S despite
operating in a continuous space.

The mapping method addresses two main
hyperparameter types:

e Continuous hyperparameters:
mapped from the PSO search space.

e Discrete hyperparameters: Mapped via a
two-step process: continuous value quantization
followed by mapping to predefined value sets.

Directly

The mapping function is constructed based
on three main principles:

(1) Direct dimension-to-parameter mapping

Each dimension in the particle’s position
vector corresponds to a specific 1D-CNN
hyperparameter, as defined by the params_keys
list. This mechanism establishes a one-to-one
relationship between the PSO space and the
parameter  space, enabling simultaneous
optimization of heterogeneous parameters.

params_keys = ['num_filters"',
.., 'patience']

'kernel_size',

for j, key in enumerate(params_keys):

value = particles[j][i]

(2) Continuous value quantization

Integer hyparameters are quantized from the
particle’s continuous values using rounding. This
resolves the paradox between PSO’s continuous
space and the discrete nature of many
hyperparameters.

if key in ['num_filters',
.., 'patience']:

'kernel_size',

value = int(round(value))

(3) Value constraint to predefined sets

For hyperparameters with finite value
domains, a clipping index technique selects
values from predefined sets. Specifically,
quantized integer values are mapped to indices of
the value_choices array, with an upper bound set
to the array length to prevent index overflow.
This confines the search space to empirically
validated values.

value_choices = [16, 32, 64]

value=value_choices[min(int(value),
len(value_choices)-1)]

The integration of quantization and domain-
based constraints allows PSO to avoid
meaningless search regions while retaining
flexibility in exploring optimal configurations
for 10T attack detection.

D. Multi-objective optimization function

The optimization of the 1D-CNN model for
loT attack detection employs a global multi-
objective optimization function, formulated as:

Maximize F(S) = {/1(5), ()}  (9)

where:

- F: Global objective function.

- f1: Accuracy objective function.

- fo: Execution time objective function.

- S: Hyperparameter set of the 1D-CNN model.

These functions are defined and constructed
below.

Definition 4 — Accuracy Objective Function

Accuracy is the core metric for evaluating the
classification performance of the model. The
accuracy objective function is based on the
accuracy in validation dataset, calculated as the
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ratio of correctly classified samples to the total
validation samples:

£ = TP+TN
1™ TP+TN+FP+FN

(10)

where:

- TP (True Positives): Number of correctly
identified attack samples.

- TN (True Negatives): Number of correctly
identified normal samples.

- FP (False Positives): Number of normal
samples misclassified as attacks.

- FN (False Negatives): Number of attack
samples misclassified as normal.

In terms of dimensionality, fi is represented
as a dimensionless ratio with values ranging from
0to 1, where 0 indicates the lowest accuracy and
1 indicates perfect accuracy. Therefore, no
additional normalization steps are required for
this function.

The goal is to maximize f1 to ensure accurate
attack detection. However, overemphasizing
accuracy may lead to overly complex models
with excessive computational demands.

Definition 5 — Execution Time Objective
Function

Execution time reflects the computational
efficiency of the model, which is critical for real-
time 10T systems. This value is measured as the
total time for model training and evaluation on
validation datasets.

To normalize the execution time value, this
study constructs the function f, as an inverse
exponential function as follows:

(11)

where: k is the decay coefficient (unit: s,
determined as the reciprocal of the reference time

To(k = Ti); T is the execution time of the 1D-
0
CNN model (unit: s).

The normalization mechanism of f, relies on
the principle of nonlinear exponential
transformation to map execution time values
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from the extended domain (0,+) to the bounded
domain (0,1). Specifically, as the execution time
T approaches 0, the value of f, approaches 1
(optimal); conversely, as T increases towards
infinity, f» asymptotically approaches 0
(suboptimal). Notably, the use of the inverse
exponential function also eliminates the unit of
f2. In the expression k.T, k has the unit s*and T
has the unit s, making k.T a dimensionless
quantity. Consequently, f2 is also dimensionless.

The decay coefficient k plays a crucial role in
adjusting the degree of influence of the execution
time on the value of f,. Specifically:

- Larger k (corresponding to smaller To):
Sharp decline in f>as T increases, imposing
stricter penalties.

- Smaller k (corresponding to larger To):
Reduced sensitivity to T, allowing a trade-off
between execution time and other factors.

The choice of k depends on the specific
expected range of execution time values for each
problem and the priority level for time
performance. In this study, k=0.001(s?) is
selected, corresponding to a reference time
To=1000 (s), based on an analysis of the
execution time range T of the 1D-CNN model in
the 1oT attack detection problem. In this
problem, the execution time typically fluctuates
between 100 and 1500 seconds, with only a few
special cases exceeding 1500 seconds.

Definition 6 — Global Objective Function

The global optimization function F is
designed to evaluate the balance between the
individual optimization objectives. The aim in
this problem is to find the maximum value of F.

The function F combines fi and f, through a
weighting factor w, as follows:
F=wxfi+(1-w)Xf (12)
where: w is the weight parameter adjusting
the priority between objectives (w € [0,1]).

In multi-objective optimization, w is tuned
based on the relative importance of accuracy
versus computational efficiency or specific
system requirements. Adjustments to w should



follow a cost-benefit analysis to ensure the model
satisfies 0T system constraints.

In this study, to identify the optimal weight
values, we conducted experiments with 9
different weight values ranging from 0.1 to 0.9,
with increments of 0.1, on the dataset. The
evaluation criteria were established based on
three key factors: attack detection accuracy,
execution time, and the optimization function
value (F-value). Through analysis of the results,
we observed that the weight values could be
classified into three main groups according to
their optimization characteristics.

The first group (w = 0.1-0.3) prioritizes
execution time. However, the results indicate
that an excessive focus on time optimization
significantly reduces the model’s accuracy,
achieving only 80-86%, which does not meet
the high-performance requirements for attack
detection. The second group (w = 0.4-0.6)
demonstrates a balance between objectives,
with w = 0.5 achieving an accuracy of 94.77%
and a 48.06% reduction in execution time
compared to the baseline. The third group (w =
0.7-0.9) emphasizes accuracy, with w = 0.8
attaining an accuracy of 94.41% while still
maintaining computational efficiency, reducing
execution time by 63.69% relative to the
original configuration.

The analysis reveals that while low weight
values (group 1) provide high speed, but they
lack reliability in attack detection. In contrast,
higher weight values (group 3) ensure accuracy
while preserving good computational efficiency.

Detailed experimental results for w = 0.5
(representing the second group) and w = 0.8
(representing the third group) will be presented
in the next section.

IV. EXPERIMENTS AND RESULTS
A. Dataset

The dataset used in this study is Edge-
IloTset, developed by Ferrag et al. [12]. Edge-
IloTset aggregates data from over 10 distinct
IoT devices, categorized into two primary
groups as follows:
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attack-free
system’s secure

(1) Normal: Comprising
samples, representing the
operational state.

(2) Attack: Encompassing 14 attack types
across five major threat categories:

- DDoS: Distributed Denial-of-Service
attacks through protocols such as UDP (User
Datagram Protocol), TCP (Transmission Control
Protocol), HTTP (HyperText Transfer Protocol),
and ICMP (Internet Control Message Protocol).

- Injection: Including SQL Injection and
Cross-site Scripting (XSS).

- Reconnaissance: Activities such as Port
Scanning and Fingerprinting.

- Malware: Ransomware, Backdoor, and
Uploading attacks.

- MITM: Man-in-the-Middle attacks.

The sample distribution across classes in
Edge-lloTset is illustrated in Figure 5.

The initial preprocessing steps align with
those outlined by Ferrag et al. [12], including the
removal of low-significance columns, outlier
handling, label encoding, and similar procedures.

Additionally, this study introduces a novel
method to reduce dataset memory footprint,
optimizing processing efficiency for large-scale
data. Specifically:

- For integer columns (int64): Values are
converted to smaller integer or unsigned integer
types, contingent on the int2uint flag. This
minimizes storage requirements without data
loss.

- For float columns (float64): Values are
downcast to float32, halving memory usage
while preserving high precision.

This memory reduction is critical for
handling large datasets like Edge-lloTset,
accelerating processing speed and conserving
system resources without compromising data
integrity.
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Distribution of samples in each category
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Figure 5. The distribution of the number of samples
within each class in Edge-l10Tset

Furthermore, we implemented a data
processing method from Kilichev et al. [13],
where a hash function is applied per column to
identify identical features. By comparing hash
values, duplicate column groups were detected
and removed. This step is vital for eliminating

redundancy, thereby  enhancing  model
efficiency.
After the preprocessing and cleaning

procedures, the number of features was reduced
from 95 to 86.

Finally, the dataset was partitioned into three
subsets:

- Training set: 70% of the data.
- Validation set: 10% of the data.
- Test set: 20% of the data.

B. Evaluation metrics

To evaluate the performance of the loT
attack detection model based on 1D-CNN with
hyperparameter optimization via PSO, this study
employs Accuracy as the primary metric,
supplemented by three additional metrics:
Precision, Recall, and F1-score. The primary
metric (Accuracy) is applied to the training,
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validation, and test datasets. The supplementary
metrics (Precision, Recall, F1-score) are
calculated post-training through evaluation on
the test set, providing a comprehensive overview
of the model’s effectiveness in accurately
detecting attacks and the reliability of its
predictions.

Accuracy measures the ratio of correct
predictions to the total number of samples,
reflecting the model’s overall classification
capability:

TP+TN
TP+TN+FP+FN

Accuracy = (13)

where:

- TP (True Positives): Number of correctly
identified attack samples.

- TN (True Negatives): Number of correctly
identified normal samples.

- FP (False Positives): Number of normal
samples misclassified as attacks.

- FN (False Negatives): Number of attack
samples misclassified as normal.

Precision (class-specific accuracy) quantifies
the proportion of correct predictions among all
samples predicted as a specific class:

TP
TP+FP

Precision = (14)

where: TP (True Positives) is the number of
correctly identified attack samples; FP  (False
Positives) is the number of normal samples
misclassified as attacks.

Recall (class-specific sensitivity) measures
the proportion of correctly identified samples
relative to all actual samples of a class:

TP
TP+FN

Recall = (15)

where: TP (True Positives) is the number of
correctly identified attack samples; FN (False
Negatives) is the number of attack samples
misclassified as normal.

F1-score: The F1-score is the harmonic mean
of Precision and Recall.
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Precision x Recall
_— 16

F1 —score = 2x Precision+Recall

C. Model evaluation

To evaluate the effectiveness of the proposed
method, we conducted a series of experiments on
the aforementioned dataset to compare two
models: the baseline model from the original
study [6] (Model 0) and our proposed improved
model (Model 1). Both models utilize the multi-
objective optimization function F (defined
above) with different w values (where w = 0.5
represents a balanced emphasis on accuracy and
execution time, while w = 0.8 prioritizes
accuracy more heavily).

Table 1l and Figure 6 presents a comparative
performance analysis between the two models,
including the F-value, validation accuracy, and
execution time.

TABLE Il. PERFORMANCE AND EXECUTION TIME

COMPARISON

Max F- | Validation | Execution

Model w .

value accuracy time (s)
Model 0 0.5 0.8752 0.9474 219.45
(Original
method) | gg | 0.9097 0.9478 278.16
Model 1 | 05 | 0.9200 0.9477 113.98
(Proposed
method) | 0.8 | 0.9361 0.9441 101.00

With w = 0.5, Model 1 achieved an F-value
of 0.9200, 5.12% higher than Model 0 (0.8752).
Notably, Model 1 significantly reduced
execution time to 113.98 seconds, a 48.06%
reduction compared to Model 0 (219.45
seconds), while maintaining competitive
accuracy (a marginal 0.03% improvement over
Model 0).

When w was increased to 0.8, both models
exhibited improved F-value, but Model 1
retained superiority with an F-value of 0.9361
(the highest in the experiment), outperforming
Model 0 (0.9097) by 2.9%. Model 1 also
demonstrated markedly lower execution time

representing a 63.69%
0 (278.16

(101.00 seconds),
reduction compared to Model
seconds).

(a) Max F-value Comparison

| B Model 0
[ Model 1

0.9

B

(b) Validation Accuracy Comparison

0.950
B Model 0

0.948 3 Model 1

0.948 1 0.948

0.946

0.944 1

0.942 1

0.940 -

w=08

(c) Execution Time Comparison

B Model 0
3 Model 1

3004 27816

w=05

w=08

Figure 6. Comparison chart of global optimal F-value,
accuracy and execution time of original model and
proposed model

Table 3 provides a comprehensive
comparison, including  the  optimized
hyperparameter set, overall model training time,
the number of parameters used, and the
evaluation performance on the test set.

Both models achieved high accuracy (over
94%), with negligible differences (0.02%-
0.35%). Precision and Recall exceeded 97% and
92%, respectively, for both models, indicating
robust attack detection capabilities.

At w = 0.5, despite an slightly increase in
training time (attributed to additional iterations
required to confirm the lack of further
improvement) and equivalent parameter counts
(168,529), Model 1 achieved a superior F1-
score (0.7881 compared to 0.7804), reflecting
better balance between true positives and false
alarm reduction.
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TABLE Ill. OPTIMAL CONFIGURATION AND OVERALL COMPARISON

Optimal Total Number of Performance evaluation on test set
Model w | hyperparameter set | training - F1-
. parameters | Acc. | Precision | Recall
time (s) score
64,7,5,1,512,0.5,
Model 0 | 0.5 { 0.0009, 512, 20} 12736.94 168,529 0.9479 | 0.9831 | 0.9226 | 0.7804
(Original : S—
method {64,7,5,3,512,0.1,
) |08 0.0016, 512, 22} 16332.09 693,841 0.9479 | 0.9828 | 0.9222 | 0.7976
{64,7,5, 1,512,
Model 1 | 0.5 | 0.2416, 0.0022, 512, | 13806.38 168,529 0.9477 | 0.9822 | 0.9221 | 0.7881
(Proposed 44, 5}
method) {64,7,5,2,512,0.1,
0.8 0.0065, 512, 20, 5} 15127.00 431,185 0.9444 | 0.9775 | 0.9201 | 0.7458
1.0 F-value (w=0.5)
090 | ¢ A‘\’,f" ~— 7.-‘\_1‘-“' ‘.v. . . o .‘\‘:‘
o8s '\‘/‘ \

Figure 7. F-value convergence chart of proposed model (w = 0.5)

Validation Accuracy

Figure 8. Validation accuracy values convergence chart of proposed model (w = 0.5)

Execution Time

Time (seconds)

400

Figure 9. Execution time convergence chart of proposed model (w = 0.5)
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At w = 0.8, Model 1 demonstrated
remarkable efficiency:

- 37.85% fewer parameters (431,185
compared to 693,841).

- 7.38% reduction in total training time
compared to Model 0.

For the case w = 0.5, the experimental
program stopped after 10 iterations and selected
the 5th particle at iteration 7 (iter 7, part 5) as the
best CNN configuration. Figure 7, Figure 8 and
Figure 9 respectively illustrate the convergence
behavior of F-value, validation accuracy, and
execution time across all iterations and particles
during the PSO optimization process for the
proposed 1D-CNN model.

These results underscore the effectiveness of
the proposed early stopping mechanism, adaptive
termination criteria and the multi-objective
optimization function in the enhanced PSO
algorithm, in maintaining high accuracy while
optimizing computational resource utilization.

1VV. CONCLUSION

This study proposes an optimization method
for 1D-CNN model in loT attack detection using
the PSO algorithm. The key contributions include:

- An enhanced PSO algorithm with
automatic termination criteria based on
convergence analysis;

- Integration of an early-stopping mechanism
with optimized patience thresholds to prevent
overfitting and reduce computational overhead in
1D-CNN training;

- A multi-objective optimization function that
balances detection accuracy and execution time.

Experimental results demonstrate that the
proposed method achieves significant reductions
in execution time (up to 63.69%) and parameter
count (37.85%) compared to the baseline model,
while maintaining high detection accuracy (over
94%). These outcomes validate its efficacy in
resource optimization for edge devices.

However, the method occasionally exhibits
slight declines in accuracy when prioritizing
execution time optimization, highlighting the
need for further research into adaptive weight
calibration. Current limitations also include the
lack of real-time performance evaluations in
dynamic  environments and  cross-dataset
validation, which restricts generalizability. Our
future work will focus on testing the method

across diverse datasets and evaluating its
performance on real-world resource-constrained
I0T edge devices. This research has paved the way
for deploying lightweight, high-efficiency models
in loT security systems with stringent resource
constraints, emphasizing the trade-off between
computational efficiency and detection reliability.
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