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Abstract—This study proposes a 

hyperparameter optimization method for one-

dimensional convolutional neural network using 

the Particle Swarm Optimization (PSO) algorithm 

based on a Pareto multi-objective approach to 

improve the performance of IoT attack detection 

systems. Specifically, this study enhances the PSO 

algorithm by introducing an automatic 

termination criterion for optimization loops and 

proposes an early stopping mechanism, along with 

the optimization of the early stopping patience 

during the 1D-CNN model training process, 

thereby reducing computational costs and aligning 

with the resource-constrained hardware 

conditions of IoT. Additionally, a multi-objective 

optimization function is developed to balance 

detection performance and resource efficiency by 

combining validation accuracy with the 1D-CNN's 

execution time. The proposed method is evaluated 

on the Edge-IIoTset dataset. Experimental results 

demonstrate that the optimized model reduces 

execution time by 48-63% compared to the 

baseline model while maintaining high accuracy 

(over 94%). This research not only provides a 

practical solution for IoT security but also 

pioneers a novel approach to integrating 

evolutionary algorithms into adaptive deep 

learning systems and introduces a flexible method 

for hardware-constrained devices.  

 Tóm tắt—Nghiên cứu này đề xuất một phương 

pháp tối ưu hóa siêu tham số cho mạng nơ-ron tích 

chập một chiều (1D-CNN) bằng thuật toán tối ưu 

bầy đàn (Particle Swarm Optimization  - PSO), dựa 

trên cách tiếp cận đa mục tiêu Pareto, nhằm nâng 

cao hiệu quả của các hệ thống phát hiện tấn công 

IoT. Cụ thể, nghiên cứu đã cải tiến thuật toán PSO 

bằng việc đề xuất một tiêu chí dừng tự động cho các 

vòng lặp tối ưu hóa và đề xuất cơ chế dừng sớm, 

cùng với việc tối ưu ngưỡng dừng sớm cho quá trình 

huấn luyện mô hình 1D-CNN, giúp giảm chi phí 

tính toán và phù hợp với điều kiện tài nguyên phần 

cứng hạn chế của IoT. Ngoài ra, một hàm tối ưu đa 

mục tiêu đã được xây dựng, kết hợp giữa độ chính 

xác trên tập dữ liệu xác thực và thời gian thực thi 

của mô hình 1D-CNN, đảm bảo cân bằng giữa hiệu 

suất phát hiện và hiệu quả tài nguyên. Phương pháp 

đề xuất được đánh giá trên bộ dữ liệu Edge-IIoTset. 

Kết quả thực nghiệm cho thấy mô hình đề xuất giúp 

giảm thời gian thực thi từ 48-63% so với mô hình 

gốc mà vẫn duy trì độ chính xác cao (trên 94%). 

Nghiên cứu không chỉ cung cấp một giải pháp thực 

tiễn cho vấn đề bảo mật thiết bị IoT mà còn mở ra 

hướng tiếp cận mới trong việc tích hợp các thuật 

toán tiến hóa vào các hệ thống học sâu tự động và 

giới thiệu một phương pháp linh hoạt cho các thiết 

bị có ràng buộc về phần cứng. 

Keywords— IoT attack detection, one-dimensional 

convolutional neural network (1D-CNN), particle swarm 

optimization (PSO), hyperparameter optimization (HPO), 

multi-objective optimization. 

Từ khóa—Phát hiện tấn công IoT, mạng nơ-ron tích 

chập một chiều, tối ưu bầy đàn, tối ưu hóa siêu tham số, tối 

ưu hóa đa mục tiêu. 

I. INTRODUCTION 

The Internet of Things (IoT) has 

revolutionized industries, healthcare, and smart 

cities through seamless connectivity and 

automation. However, the exponential growth 

of IoT devices projected to exceed 30 billion by 

2030, according to Vailshery's research [1], has 

introduced unprecedented security challenges. 

These resource-constrained devices, limited in 

energy, memory, and processing power, often 

become prime targets for Distributed Denial-

of-Service (DDoS) attacks, polymorphic 

malware, and zero-day vulnerability exploits. 
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Traditional signature-based or rule-defined 

Intrusion Detection Systems (IDS) prove 

increasingly ineffective against evolving, 

sophisticated threats [2]. This underscores an 

urgent demand for automated, adaptive, and 

resource-efficient solutions, particularly within 

the context of IoT hardware's inherent 

computational limitations. 

Figure 1 illustrates the exponential growth of 

global IoT connections from 2022 to 2033, 

highlighting both their transformative potential 

and the accompanying security risks [1]. The 

growing reliance on IoT in critical infrastructure 

systems—such as smart grids and industrial 

monitoring systems—renders their protection a 

matter of critical importance.  

 

Figure 1. Number of IoT connections worldwide 

from 2022 to 2023, with forecasts from 2024 to 2033 

In this context, deep learning has emerged 

as a promising tool for IoT attack detection due 

to its capacity to automatically extract features 

from raw data. CNN deep learning models are 

not only suitable for image data, but also 

adapted to process sequence and stream data in 

IDS for IoT, which can enhance the detection of 

zero-day attacks and improve system stability. 

Combining CNN with configuration 

optimization methods, especially metaheuristic 

algorithms, is becoming a potential research 

direction to further improve detection efficiency 

and reduce computational costs in practical IoT 

systems [5, 14]. 

Among CNN models, one-dimensional 

convolutional neural networks (1D-CNN) have 

demonstrated exceptional advantages in 

processing time-series data, such as network 

traffic, by employing sliding filters to detect 

anomalous patterns without requiring manual 

feature engineering [3]. However, the 

performance of 1D-CNN heavily relies on 

hyperparameter selection (e.g., number of 

layers, filter size, learning rate). Optimizing 

these parameters is typically performed 

manually or via grid search, which is time-

consuming and inefficient in high-dimensional 

parameter spaces. 

While studies have proposed evolutionary 

algorithms, such as Particle Swarm 

Optimization, to automate hyperparameter 

tuning, most fail to account for the resource-

constrained hardware environments during 

model training, resulting in high computational 

costs and impractical real-world deployment. To 

address the dual challenge of balancing 

performance optimization and resource 

efficiency, the Pareto multi-objective 

optimization principle serves as a strategic 

framework. This approach identifies a Pareto 

optimal solution set (Pareto Front), where no 

objective (e.g., accuracy) can be improved 

without degrading another (e.g., processing 

time). Building on foundational studies [4, 5] in 

multi-objective hyperparameter optimization for 

CNNs, this research advances a dynamically 

balanced solution that harmonizes model 

efficacy with practical deployability in resource-

limited IoT ecosystems. 

This paper focuses on optimizing 1D-CNN 

configurations for IoT attack detection through 

three primary contributions: 

- Enhancing the PSO algorithm by introducing 

adaptive termination criteria for optimization 

loops, reducing computational overhead while 

maintaining convergence efficiency. 

- Integrating an early-stopping mechanism 

with optimized early-stopping patience 

hyperparameter tuning to minimize training time 

without compromising detection accuracy. 

- Proposing a novel multi-objective 

optimization function that jointly maximizes 

classification accuracy and minimizes 

execution time, ensuring models are both high-



Journal of Science and Technology on Information security 

 

    No 1.CS (24) 2025   55 

performing and resource-efficient for 

deployment on edge devices. 

The structure of our paper is as follows: 

Section II - Presents a review of related works. 

Section III - Covers the theoretical background. 

Section IV - Details the proposed method. 

Section V - Describes the experimental setup 

and evaluation of the approach. Section VI - 

Concludes the paper and suggests future 

research directions. 

II. RELATED WORKS 

Kilichev et al. [6] presented a study focused 

on optimizing nine hyperparameters of 1D-CNN 

using Genetic Algorithms (GA) and Particle 

Swarm Optimization for network intrusion 

detection, with potential applications in IoT. The 

experiments utilized the UNSW-NB15, CIC-

IDS2017, and NSL-KDD datasets. GA and PSO 

were employed to optimize parameters such as 

the number of filters, kernel size, pooling size, 

number of dense layers, dropout rate, learning 

rate, batch size, and number of epochs. Both 

algorithms significantly enhanced model 

performance, with GA achieving accuracies of 

99.31%, 99.71%, and 99.63% across the three 

datasets, while PSO attained 99.28%, 99.74%, 

and 99.52%, respectively. When compared to 

other CNN and hybrid models, the optimized 

approach demonstrates superior detection 

capabilities. However, the study highlighted that 

neither optimization method universally 

outperformed the other; instead, the efficacy of 

GA and PSO was contingent on specific dataset 

characteristics. The authors proposed future 

research directions, including the exploration of 

additional optimization algorithms, multi-

objective optimization strategies, and validation 

on new datasets. 

El-Ghamry et al. [7] proposed a CNN-based 

intrusion detection system optimized via 

Particle Swarm Optimization for smart 

agriculture - an IoT application aimed at 

mitigating cybersecurity risks posed by network 

attacks. The study utilized the NSL-KDD 

dataset to evaluate the performance of pre-

trained CNN architectures (VGG16, Xception, 

Inception) following PSO-driven 

hyperparameter tuning. PSO was employed to 

optimize critical hyperparameters, including 

dropout rate, early-stopping patience, the 

number of frozen layers, learning rate, and the 

number of epochs. The findings revealed that 

the PSO-optimized models significantly 

enhanced performance metrics, outperforming 

their non-optimized counterparts. This research 

underscores the potential of PSO in improving 

intrusion detection capabilities within specific 

IoT contexts, such as smart agriculture. 

Kan et al. [8] introduced a 1D-CNN-based 

method for detecting network intrusions in IoT, 

where hyperparameters are optimized using 

Adaptive Particle Swarm Optimization (APSO), 

an enhanced variant of PSO. APSO employs an 

adaptively varying inertia weight based on the 

fitness value, which balances exploration and 

exploitation in the search space, thereby 

addressing some limitations of traditional PSO. 

The study utilized a real-world dataset from nine 

IoT devices, encompassing attack types such as 

Ack, COMBO, Junk, Scan, Syn, TCP, UDP, and 

UDPplain. The fitness function was defined as 

the cross-entropy loss on the validation set after 

the initial training iteration of the CNN. The 

results demonstrated that the APSO-CNN model 

outperformed traditional methods such as SVM, 

FNN, and manually configured CNN (R-CNN) 

across all five evaluation metrics. However, the 

optimization process of APSO can be time-

consuming; therefore, the authors suggested 

future research directions including improving 

the optimization algorithm and reducing 

computational complexity. 

Bahaa et al. [9] proposed a hybrid 

optimization algorithm, combining Adaptive 

Particle Swarm Optimization (APSO) and Whale 

Optimization Algorithm (WOA), termed APSO-

WOA, to optimize hyperparameters of 1D-CNN 

for detecting attacks in IoT networks. The 

APSO-WOA algorithm optimizes 10 

hyperparameters, including the number of filters, 

kernel size, activation function, dropout rate, 

number of neurons in the fully connected layers, 

batch size and learning rate, with the fitness 

function defined as the cross-entropy loss. The 

method was evaluated on the N-BaIoT dataset, 
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comprising 115 features, and compared against 

models such as APSO-CNN, SVM, and FNN 

(Feedforward Neural Network). Experimental 

results demonstrated that APSO-WOA-CNN 

improved accuracy by 1.25% and precision by 

1% compared to APSO-CNN, while 

significantly outperforming the other methods, 

confirming the effectiveness of the approach in 

detecting a diverse range of IoT attacks. 

Nevertheless, the optimization process still 

requires considerable computational time. Future 

research directions include incorporating other 

optimization algorithms (e.g., ant colony 

optimization, genetic algorithms) to enhance 

computational efficiency, as well as integrating 

data preprocessing techniques to select the most 

effective features. 

Yang et al. [10] proposed an intrusion 

detection system (IDS) leveraging transfer 

learning and ensemble learning, utilizing CNN 

models with hyperparameters optimized via 

Particle Swarm Optimization. The optimized 

hyperparameters include the number of epochs, 

batch size, early-stopping patience, learning 

rate, dropout rate, and number of frozen layers. 

The study employed two datasets: Car-Hacking 

and CICIDS2017, with hyperparameter tuning 

primarily focused on CICIDS2017, as the 

default model configuration already achieved 

near-perfect accuracy (approximately 100%) on 

the Car-Hacking dataset. The proposed system 

attained a detection rate and F1-score exceeding 

99.25% across both datasets, demonstrating its 

effectiveness in identifying cyberattacks within 

Internet of Vehicles (IoV) systems. However, 

the authors highlighted a critical limitation: the 

system’s performance heavily depends on 

dataset diversity and richness, which may 

hinder its generalization in more complex, real-

world scenarios. 

Aguerchi et al. [11] focused on developing a 

novel method for breast cancer detection by 

optimizing CNN models using the Particle Swarm 

Optimization algorithm. The proposed PSOCNN 

model comprises four primary stages and was 

evaluated on the DDSM and MIAS datasets, 

achieving impressive accuracy rates of 98.23% 

(DDSM) and 97.98% (MIAS), surpassing 

competing algorithms. However, the study 

exhibits several limitations, including the lack of 

testing on a broader range of diverse datasets, the 

absence of comparisons regarding training time 

and computational cost with traditional methods, 

and the optimization being limited to a basic set of 

hyperparameters without extending to other 

critical parameters such as the number of epochs 

and the number of convolutional layers. 

In summary, existing studies have 

demonstrated the efficacy of PSO in optimizing 

hyperparameters for 1D-CNN-based models. 

However, these works face key limitations: (1) 

they primarily focus on optimizing a limited 

subset of hyperparameters; (2) they are restricted 

to specific IoT datasets, limiting generalizability; 

and (3) they do not address the Pareto multi-

objective optimization problem, which is critical 

for balancing competing objectives like accuracy 

and computational efficiency in resource-

constrained IoT environments. 

Figure 2. The architecture of the employed 1D-CNN model 
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III. BACKGROUND 

A. 1D-CNN model 

In this study, the one-dimensional 

convolutional neural network (1D-CNN) was 

selected as the primary model due to the 

following advantages: 

- Suitability for sequential data: Unlike 2D-

CNN (commonly used for image processing), 

1D-CNN operates on unidimensional data. It 

scans through sequential data to extract local 

patterns, such as anomalous traffic signatures 

within short time intervals. 

- Computational efficiency: Compared to 

2D-CNN, 1D-CNN have fewer parameters and 

lower computational demands. For data of 

size N × N and a filter of size K × K, the 

computational complexity of 2D-CNN 

is O(N2K2), whereas for 1D-CNN, it reduces 

to O(NK). This efficiency is critical for 

deploying models on IoT devices with 

constrained processing power and memory. 

- Automatic feature learning: 1D-CNN 

automatically extract intricate features from 

sequential data without relying on manually 

feature extraction steps required in traditional 

machine learning, thereby reducing human effort 

and potential errors. 

The 1D-CNN architecture used for 

hyperparameter optimization in this work 

follows a structure similar to that proposed by 

Kilichev et al. [6]. The detailed architecture of 

the 1D-CNN model is illustrated in Figure 2. 

The model is built using a sequential 

structure with two primary convolutional blocks. 

Each block consists of a convolutional layer 

(Conv1D) with ReLU activation, followed by a 

max pooling layer (MaxPooling1D). Subsequent 

to the convolutional blocks, a Dropout layer is 

incorporated to mitigate overfitting. A Flatten 

layer then transforms the multidimensional 

output into a one-dimensional vector. The final 

segment of the model includes multiple fully 

connected (Dense) layers, each activated by 

ReLU and succeeded by a Dropout layer. The 

output layer employs a Softmax activation 

function, making the architecture suitable for 

multiclass classification tasks. 

The model is configured with the Adam 

optimizer and trained using the categorical cross-

entropy loss function.  

B. Particle Swarm Optimization  

The PSO algorithm is a metaheuristic 

optimization technique developed by James 

Kennedy and Russell Eberhart in 1995. Inspired 

by the movement behavior of animal swarms in 

nature, such as flocks of birds, schools of fish, or 

other organisms, PSO simulates how individuals 

(particles) navigate a search space by leveraging 

their own experience and information from 

neighboring particles to progress toward the 

optimal solution. Designed to address complex 

optimization problems, PSO efficiently explores 

high-dimensional solution spaces without 

relying on gradient-based methods.  

Figure 3 illustrates the workflow of the PSO 

algorithm. 

 

Figure 3. PSO algorithm flowchart 

The PSO algorithm operates by maintaining 

a population of particles, each representing a 

potential solution to the optimization problem. 

The search for the optimal solution involves the 

following steps: 
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Step 1: Initialize population 

A swarm of particles is randomly generated 

within the search space. Each particle is assigned 

an initial position 𝑥𝑖 (where i denotes the particle 

index) and an individual velocity 𝑣𝑖. 

Step 2: Evaluate fitness 

Each particle’s quality is assessed using a 

predefined fitness (objective) function, which 

quantifies its suitability as a solution to the 

optimization problem. 

Step 3: Updating local best (pbest) and 

global best (gbest) 

After evaluating the fitness values, the local 

best position (𝑝𝑏𝑒𝑠𝑡𝑖) of each particle is updated. 

If the fitness of its current position (𝑥𝑖) surpasses 

that of its previous 𝑝𝑏𝑒𝑠𝑡𝑖, the local best is 

updated as follows:      

𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖                       (1) 

Subsequently, the algorithm compares the 

particle’s fitness with the current global best value 

(gbest). If the particle’s fitness exceeds F(gbest), 

where F(x) denotes the fitness function evaluated 

at gbest, the global best is updated:       

𝑔𝑏𝑒𝑠𝑡 = 𝑥𝑖                        (2) 

Step 4: Update velocity and position 

Each particle adjusts its velocity based on 

two guiding factors: 

(i) Personal Experience (pbest): The best 

position the particle has individually achieved. 

(ii) Swarm Intelligence (gbest): The best 

position discovered by any particle in the entire 

population. 

The new velocity is calculated using the 

formula: 

𝑣𝑖
(𝑡+1)

= 𝜔 ∗ 𝑣𝑖
(𝑡)

+ 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 −

𝑥𝑖
(𝑡)

) + 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

)       (3) 

where: 

- 𝜔: Inertia weight, controlling the influence 

of the previous velocity. 

- 𝑐1, 𝑐2: Acceleration coefficients 

for pbest and gbest, respectively. 

- 𝑟1, 𝑟2: Random values uniformly distributed 

in [0, 1]. 

- 𝑣𝑖
(𝑡)

: Velocity of particle i at iteration t. 

- 𝑥𝑖
(𝑡)

: Position of particle i at iteration t. 

- 𝑝𝑏𝑒𝑠𝑡𝑖: Personal best position of particle i. 

- 𝑔𝑏𝑒𝑠𝑡: Global best position of the 

swarm. 

The position of particle i at the next iteration 

t+1 is then updated using the following equation: 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

       (4) 

Step 5: Check termination criteria 

The algorithm verifies whether termination 

criteria—such as reaching the maximum 

number of iterations or achieving a satisfactory 

fitness value (convergence) - is met. If satisfied, 

the algorithm terminates and returns the global 

best solution gbest. Otherwise, it iterates back 

to Step 2. 

In this study, each particle in the PSO 

algorithm represents a set of hyperparameters S, 

and the population P encompasses all feasible 

hyperparameter combinations. Our objective is 

to identify the optimal hyperparameter 

set S*∈P that maximizes the performance of the 

1D-CNN model. 

Definition 1 – Population (Swarm) 

The population P is defined as: 

P = {S1, S2, …, SN}       (5) 

where: Si (i =1..N) denotes a 

hyperparameter set of the 1D-CNN model, and 

N is the population size (number of particles). 

Definition 2 – Individual (Particle) 

An individual S is defined as: 

S = {s1, s2, …, sM}        (6) 

 where: si (i =1..M) represents a 

hyperparameter value, and M is the number of 

hyperparameters in the 1D-CNN model. 

Definion 3 – Optimization Objective 
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The objective of the optimization problem is 

to find the optimal hyperparameter set S* that 

satisfies: 

𝑆∗ = arg max
𝑆∈𝑃

𝐹(𝑆)        (7) 

where: S: A specific hyperparameter set, P: 

The search space of all possible hyperparameter 

sets, F(S): The fitness function evaluating the 

1D-CNN model’s performance with 

hyperparameter set S. 

III. PROPOSED METHOD 

A. Overall workflow 

In this study, we propose an integrated model 

incorporating the Particle Swarm Optimization 

(PSO) algorithm to automatically optimize 

hyperparameters for a one-dimensional 

convolutional neural network (1D-CNN) to 

address attack detection in IoT systems. This 

comprehensive method is designed as a 

sequential process, combining model training 

with multi-objective optimization. 

The process begins by initializing a 

population of individuals, each representing a 

distinct hyperparameter set S. These 

hyperparameter configurations are utilized to 

train and evaluate the 1D-CNN model on two 

datasets: training data and validation data. 

After training, the model is assessed based on 

the fitness value of each hyperparameter set. The 

PSO algorithm then updates the local best (pbest) 

and the global best (gbest) using these evaluation 

results. Concurrently, the velocity and position 

of each individual are adjusted to guide the 

search toward improved solutions. 

This iterative cycle continues until 

predefined termination criteria is met. If the 

stopping condition is not satisfied, the process 

resumes with training and updating new 

hyperparameters. Otherwise, the optimal 1D-

CNN model, along with its corresponding 

hyperparameter set S*, is obtained. 

Finally, the optimized model is evaluated on 

a test dataset to evaluate its effectiveness and 

generalization capability.  

Figure 4 illustrates the key steps in the 1D-CNN 

training and PSO-based optimization process. 

 

Figure 4. Flowchart of the proposed PSO-based 1D-

CNN optimization method 

B. Enhanced PSO for 1D-CNN optimization 

algorithm 

The following part presents Algorithm, 

which integrates PSO to optimize 

hyperparameters for a one-dimensional 

convolutional neural network (1D-CNN). This 

algorithm comprises two 

phases: initialization and iterative optimization, 

designed to systematically identify the optimal 

hyperparameter configuration. 

Algorithm 1: Hyperparameter optimization for 

1D-CNN model using PSO 

Input: 

-N: Number of individuals in the population (a 

set of hyperparameter configurations S). 

-M: Number of hyperparameters in an 

individual (dimensionality of the search space). 

-hyperparameter_bounds: Search range for 

each hyperparameter. 

-w: Inertia weight, controlling the influence of 

the previous velocity. 
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-c1: Cognitive coefficient (personal), learning 

from individual experience. 

-c2: Social coefficient, learning from the 

swarm. 

-stopping_threshold: Minimum improvement 

threshold. 

-max_stagnation: Maximum number of 

iterations without improvement. 

Output:  

gbest: The optimal hyperparameter configuration 

S* for the 1D-CNN model. 

# Initialization  

1 FOR i = 1 to N DO 

2        position[i] ← Random position of 

individual i within hyperparameter_bounds 

3        velocity[i] ← Random velocity 

4        pbest_position[i] ← NULL 

5        pbest_fitness[i] ← NULL 

6 END FOR 

7 gbest_position ← NULL 

8 gbest_fitness ← NULL 

9 previous_gbest ← NULL 

10 no_improvement_count ← 0 

11 iteration ← 0 

# Optimization Process 

12 WHILE no_improvement_count < 

max_stagnation DO 

13    FOR i = 1 to N DO 

14       fitness ← evaluate_fitness(position[i]) 

15       IF fitness > pbest_fitness[i]: 

16          pbest_position[i] ← position[i] 

17          pbest_fitness[i] ← fitness 

18       END IF 

19       IF fitness > gbest_fitness: 

20          gbest_position ← position[i] 

21          gbest_fitness ← fitness[i] 

22       END IF 

23    END FOR 

24    FOR i = 1 to N DO 

25       FOR j = 1 to M DO 

26          r1, r2 ← Random numbers in the range 

[0, 1] 

27   velocity[j][i] ← ω ∗ velocity[j][i] + 

c1 ∗ r1 ∗ (pbest[i][j] − position[j][i]) + 

c2 ∗ r2 ∗ (gbest[j] − position[j][i]) 

28          position[j][i] ← position[j][i] + 

velocity[j][i] 

29          position[j][i] ← clip(position[j][i], 

hyperparameter_bounds[j]) 

30       END FOR 

31    END FOR 

32    IF previous_gbest is not NULL: 

33       improvement ← gbest_fitness - 

previous_gbest 

34       IF improvement <= stopping_threshold: 

35          no_improvement_count ←     

no_improvement_count + 1 

36       ELSE: 

37          no_improvement_count ← 0 

38       END IF 

39    END IF 

40    previous_gbest ← gbest_fitness 

41    iteration ← iteration + 1 

42 END WHILE 

43 RETURN gbest 

Explanation of steps in the algorithm: 

1. Initialization 

- Initialize N particles with randomized 

positions and velocities within the 

hyperparameter search space. 

- Set coefficients c1 (cognitive acceleration), 

c2 (social acceleration), and w (inertia weight) to 

regulate particle velocity and movement 

behavior. 

- Establish initial pbest (personal best 

position) and gbest (global best position). 

- Initialize termination condition trackers and 

iteration counters. 
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2. Optimization Process 

The algorithm iterates until meeting 

termination criteria (e.g., no improvement), 

comprising three phases: 

2.1. Evaluate population  

- Evaluate fitness: Evaluate the 1D-CNN 

model’s performance using each particle’s 

current hyperparameters. 

- Update local best: Update pbest if the current 

fitness exceeds the particle’s historical best. 

- Update global best: Update gbest if the 

current fitness outperforms the global best, while 

resetting the stagnation counter. 

2.2. Update population (velocity & position) 

- Adjust particle velocity using inertial, 

cognitive, and social components 

- Update particle positions while enforcing 

search space boundaries. 

2.3. Check termination condition: Assess 

fitness improvement and increment the stagnation 

counter if no significant progress occurs. 

 3. Terminate and return output: Upon 

meeting termination criteria, return gbest 

(optimal hyperparameters S*) and the auto-saved 

best model. 

In the work of Kilichev et al. [6], the PSO 

algorithm employs a fixed loop mechanism with 

a predefined maximum number of iterations. 

This approach generally leads to two main 

limitations: 

(1) Premature termination before 

convergence, yielding suboptimal solutions. 

(2)   Redundant post-convergence 

iterations, wasting computational resources 

(CPU/GPU time, energy). 

To address these issues, we replace static 

termination with an adaptive stopping criterion 

combining that combines a minimum 

improvement threshold with a maximum number 

of consecutive iterations without improvement: 

- Minimum improvement threshold 

(stopping threshold): This represents the 

minimum fitness improvement required between 

two successive iterations to be considered as 

“progress”. In this study, it is set to 10-4. This 

value was determined through experiments with 

three threshold levels: 10⁻³, 10⁻⁴ và 10⁻⁵ using the 

dataset. The results demonstrate that a threshold 

of 10⁻⁴ achieves an optimal balance between 

convergence speed and accuracy. Compared to 

10⁻³, it enhances convergence speed, while 

relative to 10⁻⁵,  it delivers comparable 

performance with reduced computational time. 

- Maximum stagnation iterations (max 

stagnation): This allows the algorithm to 

terminate if the global fitness (gbest) does not 

significantly improve over a specified number 

of consecutive iterations. In this model, it is set 

to 3, based on an analysis balancing exploration 

capability and computational efficiency, tested 

with values of 2, 3, and 4 iterations. The 

findings indicate that 3 iterations allow the 

algorithm sufficient time to overcome local 

noise and temporary stagnation, while 

preventing unnecessary computational costs 

and avoiding premature termination due to 

random fluctuations. 

These parameter values were derived from a 

systematic study evaluating six key criteria: 

convergence speed, improvement magnitude, 

noise resistance, stability, avoidance of local 

optima, and computational efficiency. The 

results confirm that a threshold of 10⁻⁴ 

combined with a stagnation limit of 3 iterations 

optimizes the PSO algorithm’s performance, 

ensuring accuracy, efficiency, and robustness 

against noise. 

This adaptive stopping mechanism offers 

several important benefits:  

(1) Computational efficiency: Eliminates 

redundant post-convergence iterations. 

(2) Overfitting prevention: Limits excessive 

optimization that may degrade model 

generalizability. 

(3) Dynamic adaptation: Self-adjusts to 

diverse search spaces by monitoring real-time 

optimization trends rather than relying on fixed 

iteration counts. 
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C. Hyperparameter optimization  

Based on related research results mentioned 

above, in this study, we propose a set of 

hyperparameters S, to be optimized for the 1D-

CNN model, defined as follows: 

S = {s₁, s₂, s₃, s₄, s₅, s₆, s₇, s₈, s₉, s₁₀} (8) 

where: 

- s₁: Number of filters - determines the 

model’s feature extraction capability. 

- s₂: Kernel size - influences the local 

analysis scope of the data. 

- s₃: Pooling size - affects the degree of 

feature information compression. 

- s₄: Number of dense layers - governs the 

depth of high-level feature learning. 

- s₅: Number of neurons in dense layers - 

impacts nonlinear representation capacity. 

- s₆: Dropout rate - controls regularization 

strength to prevent overfitting. 

- s₇: Learning rate - adjusts the convergence 

speed of the learning process. 

- s₈: Batch size - influences training stability 

and speed. 

- s₉: Number of epochs - determines the total 

learning duration. 

- s₁₀: Early-stopping patience - regulates the 

optimal stopping point. 

This study integrates an early-stopping 

mechanism into the 1D-CNN model, a 

significant enhancement compared to the 

original approach by Kilichev et al. [6]. The 

mechanism is designed to automatically halt 

training when performance plateaus after a 

predefined number of epochs, thereby mitigating 

overfitting and optimizing training time. 

Furthermore, our research incorporates 

early-stopping patience into the list of 

hyperparameters optimized via the PSO 

algorithm. This allows the 1D-CNN model to 

automatically adjust the maximum waiting 

epochs before termination (e.g., 5, 10, or 15 

epochs) based on data characteristics and 

convergence process. 

The early-stopping mechanism is configured 

with several critical parameters, including 

monitor and mode. For the monitor parameter, 

the study employs 'val_accuracy' to track 

validation accuracy. Correspondingly, the mode 

parameter is set to 'max' (training stops when 

accuracy ceases to improve). 

Table I presents the list of hyperparameters 

optimized for the 1D-CNN model, along with 

their respective value ranges. 

TABLE I.  RANGE OF OPTIMIZED 

HYPERPARAMETER VALUES 

Symbols Hyperparamter Range 

s₁ Number of filters [16, 32, 64] 

s2 Kernel size [3, 5, 7] 

s3 Pooling size (2, 5) 

s4 
Number of dense 

layers 
(1, 3) 

s5 
Number of neurons in 

dense layers 
[128, 256, 512] 

s6 Dropout rate (0.1, 0.5) 

s7 Learning rate (10−5, 10−2) 

s8 Batch size 
[32, 64, 128, 

256, 512] 

s9 Number of epochs (20, 50) 

s10 
Early-stopping 

patience 
(5, 10) 

Unlike the approach in [6], we selectively 

narrow the value domains of certain 

hyperparameters. Combined with PSO’s velocity 

update mechanism, this strategy maintains 

effective exploration while filtering out 

infeasible configurations, reducing overfitting 

risks and computational waste. This narrowing 

reflects domain knowledge-driven design, 

balancing model capacity with the resource 

constraints of IoT systems. 

The proposed hyperparameter, early-

stopping patience (s10), has its value range 

established through a series of preliminary 

experiments conducted on the dataset prior to the 

main model improvement phase. We observed 

that patience values smaller than 5 epochs often 

result in premature stopping, whereas values 

exceeding 10 epochs fail to provide significant 



Journal of Science and Technology on Information security 

 

    No 1.CS (24) 2025   63 

accuracy improvements while unnecessarily 

prolonging training time. 

The findings demonstrate that a patience 

range of 5-10 epochs not only aligns with the 

convergence properties of the PSO algorithm but 

also effectively supports the learning capacity of 

the 1D-CNN model on IoT data. This ensures the 

model is afforded sufficient time to capture 

critical patterns without falling into overfitting or 

squandering computational resources. 

In the problem of optimizing a 1D-CNN 

model for IoT attack detection, designing a 

mechanism to map particle positions to model 

hyperparameters plays a decisive role in the 

effectiveness of the PSO algorithm. Since PSO 

typically operates in a continuous space, while 

many 1D-CNN hyperparameters require discrete 

or integer values, a suitable conversion 

mechanism is essential. This mapping process 

defines the search space S—the set of feasible 

1D-CNN configurations—enabling the PSO 

algorithm to efficiently explore S despite 

operating in a continuous space. 

The mapping method addresses two main 

hyperparameter types: 

• Continuous hyperparameters: Directly 

mapped from the PSO search space. 

• Discrete hyperparameters: Mapped via a 

two-step process: continuous value quantization 

followed by mapping to predefined value sets. 

The mapping function is constructed based 

on three main principles: 

(1) Direct dimension-to-parameter mapping 

Each dimension in the particle’s position 

vector corresponds to a specific 1D-CNN 

hyperparameter, as defined by the params_keys 

list. This mechanism establishes a one-to-one 

relationship between the PSO space and the 

parameter space, enabling simultaneous 

optimization of heterogeneous parameters. 

params_keys = ['num_filters', 'kernel_size', 
..., 'patience']   

for j, key in enumerate(params_keys):   

    value = particles[j][i]   

(2) Continuous value quantization 

Integer hyparameters are quantized from the 

particle’s continuous values using rounding. This 

resolves the paradox between PSO’s continuous 

space and the discrete nature of many 

hyperparameters. 

if key in ['num_filters', 'kernel_size', 
..., 'patience']: 

value = int(round(value)) 

(3) Value constraint to predefined sets 

For hyperparameters with finite value 

domains, a clipping index technique selects 

values from predefined sets. Specifically, 

quantized integer values are mapped to indices of 

the value_choices array, with an upper bound set 

to the array length to prevent index overflow. 

This confines the search space to empirically 

validated values. 

value_choices = [16, 32, 64] 

value=value_choices[min(int(value), 
len(value_choices)-1)] 

The integration of quantization and domain-

based constraints allows PSO to avoid 

meaningless search regions while retaining 

flexibility in exploring optimal configurations 

for IoT attack detection. 

D. Multi-objective optimization function 

The optimization of the 1D-CNN model for 

IoT attack detection employs a global multi-

objective optimization function, formulated as: 

Maximize 𝐅(𝑆) = {𝑓1(𝑆), 𝑓2(𝑆)}    (9) 

where:  

- F: Global objective function. 

- f1: Accuracy objective function. 

- f2: Execution time objective function. 

- S: Hyperparameter set of the 1D-CNN model. 

These functions are defined and constructed 

below. 

Definition 4 – Accuracy Objective Function 

Accuracy is the core metric for evaluating the 

classification performance of the model. The 

accuracy objective function is based on the 

accuracy in validation dataset, calculated as the 
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ratio of correctly classified samples to the total 

validation samples: 

𝑓1 =
TP+TN

TP+TN+FP+FN
       (10) 

where:  

- TP (True Positives): Number of correctly 

identified attack samples. 

- TN (True Negatives): Number of correctly 

identified normal samples. 

- FP (False Positives): Number of normal 

samples misclassified as attacks. 

- FN (False Negatives): Number of attack 

samples misclassified as normal. 

In terms of dimensionality, f1 is represented 

as a dimensionless ratio with values ranging from 

0 to 1, where 0 indicates the lowest accuracy and 

1 indicates perfect accuracy. Therefore, no 

additional normalization steps are required for 

this function.  

The goal is to maximize f1 to ensure accurate 

attack detection. However, overemphasizing 

accuracy may lead to overly complex models 

with excessive computational demands. 

Definition 5 – Execution Time Objective 

Function 

Execution time reflects the computational 

efficiency of the model, which is critical for real-

time IoT systems. This value is measured as the 

total time for model training and evaluation on 

validation datasets. 

To normalize the execution time value, this 

study constructs the function f2 as an inverse 

exponential function as follows: 

𝑓2 =
1

𝑒𝑘.𝑇
          (11) 

where: k is the decay coefficient (unit: s-1), 

determined as the reciprocal of the reference time 

T0 (𝑘 =  
1

𝑇0
); T is the execution time of the 1D-

CNN model (unit: s).  

The normalization mechanism of f2 relies on 

the principle of nonlinear exponential 

transformation to map execution time values 

from the extended domain (0,+∞) to the bounded 

domain (0,1). Specifically, as the execution time 

T approaches 0, the value of f2 approaches 1 

(optimal); conversely, as T increases towards 

infinity, f2 asymptotically approaches 0 

(suboptimal). Notably, the use of the inverse 

exponential function also eliminates the unit of 

f2. In the expression k.T, k has the unit s-1 and T 

has the unit s, making k.T a dimensionless 

quantity. Consequently, f2 is also dimensionless. 

The decay coefficient k plays a crucial role in 

adjusting the degree of influence of the execution 

time on the value of f2. Specifically: 

- Larger k (corresponding to smaller T0): 

Sharp decline in f2 as T increases, imposing 

stricter penalties. 

- Smaller k (corresponding to larger T0):  

Reduced sensitivity to T, allowing a trade-off 

between execution time and other factors. 

The choice of k depends on the specific 

expected range of execution time values for each 

problem and the priority level for time 

performance. In this study, k=0.001 (s-1) is 

selected, corresponding to a reference time 

T0=1000 (s), based on an analysis of the 

execution time range T of the 1D-CNN model in 

the IoT attack detection problem. In this 

problem, the execution time typically fluctuates 

between 100 and 1500 seconds, with only a few 

special cases exceeding 1500 seconds. 

Definition 6 – Global Objective Function 

The global optimization function F is 

designed to evaluate the balance between the 

individual optimization objectives. The aim in 

this problem is to find the maximum value of F. 

The function F combines f1 and f2 through a 

weighting factor w, as follows: 

     F =  𝑤 × 𝑓1 + (1 − 𝑤) × 𝑓2     (12) 

where: w is the weight parameter adjusting 

the priority between objectives (𝑤 ∈ [0,1]). 

In multi-objective optimization, w is tuned 

based on the relative importance of accuracy 

versus computational efficiency or specific 

system requirements. Adjustments to w should 
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follow a cost-benefit analysis to ensure the model 

satisfies IoT system constraints. 

In this study, to identify the optimal weight 

values, we conducted experiments with 9 

different weight values ranging from 0.1 to 0.9, 

with increments of 0.1, on the dataset. The 

evaluation criteria were established based on 

three key factors: attack detection accuracy, 

execution time, and the optimization function 

value (F-value). Through analysis of the results, 

we observed that the weight values could be 

classified into three main groups according to 

their optimization characteristics. 

The first group (w = 0.1-0.3) prioritizes 

execution time. However, the results indicate 

that an excessive focus on time optimization 

significantly reduces the model’s accuracy, 

achieving only 80-86%, which does not meet 

the high-performance requirements for attack 

detection. The second group (w = 0.4-0.6) 

demonstrates a balance between objectives, 

with w = 0.5 achieving an accuracy of 94.77% 

and a 48.06% reduction in execution time 

compared to the baseline. The third group (w = 

0.7-0.9) emphasizes accuracy, with w = 0.8 

attaining an accuracy of 94.41% while still 

maintaining computational efficiency, reducing 

execution time by 63.69% relative to the 

original configuration. 

The analysis reveals that while low weight 

values (group 1) provide high speed, but they 

lack reliability in attack detection. In contrast, 

higher weight values (group 3) ensure accuracy 

while preserving good computational efficiency. 

Detailed experimental results for w = 0.5 

(representing the second group) and w = 0.8 

(representing the third group) will be presented 

in the next section. 

IV. EXPERIMENTS AND RESULTS 

A. Dataset 

The dataset used in this study is Edge-

IIoTset, developed by Ferrag et al. [12]. Edge-

IIoTset aggregates data from over 10 distinct 

IoT devices, categorized into two primary 

groups as follows: 

(1) Normal: Comprising attack-free 

samples, representing the system’s secure 

operational state. 

(2) Attack: Encompassing 14 attack types 

across five major threat categories: 

- DDoS: Distributed Denial-of-Service 

attacks through protocols such as UDP (User 

Datagram Protocol), TCP (Transmission Control 

Protocol), HTTP (HyperText Transfer Protocol), 

and ICMP (Internet Control Message Protocol). 

- Injection: Including SQL Injection and 

Cross-site Scripting (XSS). 

- Reconnaissance: Activities such as Port 

Scanning and Fingerprinting. 

- Malware: Ransomware, Backdoor, and 

Uploading attacks. 

- MITM: Man-in-the-Middle attacks. 

The sample distribution across classes in 

Edge-IIoTset is illustrated in Figure 5. 

The initial preprocessing steps align with 

those outlined by Ferrag et al. [12], including the 

removal of low-significance columns, outlier 

handling, label encoding, and similar procedures. 

Additionally, this study introduces a novel 

method to reduce dataset memory footprint, 

optimizing processing efficiency for large-scale 

data. Specifically: 

- For integer columns (int64): Values are 

converted to smaller integer or unsigned integer 

types, contingent on the int2uint flag. This 

minimizes storage requirements without data 

loss. 

- For float columns (float64): Values are 

downcast to float32, halving memory usage 

while preserving high precision. 

This memory reduction is critical for 

handling large datasets like Edge-IIoTset, 

accelerating processing speed and conserving 

system resources without compromising data 

integrity. 
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Figure 5. The distribution of the number of samples 

within each class in Edge-IIoTset 

Furthermore, we implemented a data 

processing method from Kilichev et al. [13], 

where a hash function is applied per column to 

identify identical features. By comparing hash 

values, duplicate column groups were detected 

and removed. This step is vital for eliminating 

redundancy, thereby enhancing model 

efficiency. 

After the preprocessing and cleaning 

procedures, the number of features was reduced 

from 95 to 86. 

Finally, the dataset was partitioned into three 

subsets: 

- Training set: 70% of the data. 

- Validation set: 10% of the data. 

- Test set: 20% of the data. 

B. Evaluation metrics 

To evaluate the performance of the IoT 

attack detection model based on 1D-CNN with 

hyperparameter optimization via PSO, this study 

employs Accuracy as the primary metric, 

supplemented by three additional metrics: 

Precision, Recall, and F1-score. The primary 

metric (Accuracy) is applied to the training, 

validation, and test datasets. The supplementary 

metrics (Precision, Recall, F1-score) are 

calculated post-training through evaluation on 

the test set, providing a comprehensive overview 

of the model’s effectiveness in accurately 

detecting attacks and the reliability of its 

predictions. 

Accuracy measures the ratio of correct 

predictions to the total number of samples, 

reflecting the model’s overall classification 

capability: 

Accuracy =  
TP+TN

TP+TN+FP+FN
          (13) 

where:  

- TP (True Positives): Number of correctly 

identified attack samples. 

- TN (True Negatives): Number of correctly 

identified normal samples. 

- FP (False Positives): Number of normal 

samples misclassified as attacks. 

- FN (False Negatives): Number of attack 

samples misclassified as normal. 

Precision (class-specific accuracy) quantifies 

the proportion of correct predictions among all 

samples predicted as a specific class: 

Precision =  
TP

TP+FP
      (14) 

where: TP (True Positives) is the number of 

correctly identified attack samples;  FP (False 

Positives) is the number of normal samples 

misclassified as attacks. 

Recall (class-specific sensitivity) measures 

the proportion of correctly identified samples 

relative to all actual samples of a class: 

Recall =  
TP

TP+FN
      (15) 

where: TP (True Positives) is the number of 

correctly identified attack samples; FN (False 

Negatives) is the number of attack samples 

misclassified as normal.  

F1-score: The F1-score is the harmonic mean 

of Precision and Recall. 
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F1 − score =  2 x 
Precision x Recall

Precision+Recall
  (16) 

C. Model evaluation 

To evaluate the effectiveness of the proposed 

method, we conducted a series of experiments on 

the aforementioned dataset to compare two 

models: the baseline model from the original 

study [6] (Model 0) and our proposed improved 

model (Model 1). Both models utilize the multi-

objective optimization function F (defined 

above) with different w values (where w = 0.5 

represents a balanced emphasis on accuracy and 

execution time, while w = 0.8 prioritizes 

accuracy more heavily). 

Table II and Figure 6 presents a comparative 

performance analysis between the two models, 

including the F-value, validation accuracy, and 

execution time. 

TABLE II.  PERFORMANCE AND EXECUTION TIME 

COMPARISON  

Model w 
Max F-

value 

Validation 

accuracy 

Execution 

time (s) 

Model 0 

(Original 

method) 

0.5 0.8752 0.9474 219.45 

0.8 0.9097 0.9478 278.16 

Model 1 

(Proposed 

method)  

0.5 0.9200 0.9477 113.98 

0.8 0.9361 0.9441 101.00 

With w = 0.5, Model 1 achieved an F-value 

of 0.9200, 5.12% higher than Model 0 (0.8752). 

Notably, Model 1 significantly reduced 

execution time to 113.98 seconds, a 48.06% 

reduction compared to Model 0 (219.45 

seconds), while maintaining competitive 

accuracy (a marginal 0.03% improvement over 

Model 0). 

When w was increased to 0.8, both models 

exhibited improved F-value, but Model 1 

retained superiority with an F-value of 0.9361 

(the highest in the experiment), outperforming 

Model 0 (0.9097) by 2.9%. Model 1 also 

demonstrated markedly lower execution time 

(101.00 seconds), representing a 63.69% 

reduction compared to Model 0 (278.16 

seconds). 

 

Figure 6. Comparison chart of global optimal F-value, 

accuracy and execution time of original model and 

proposed model 

Table 3 provides a comprehensive 

comparison, including the optimized 

hyperparameter set, overall model training time, 

the number of parameters used, and the 

evaluation performance on the test set.  

Both models achieved high accuracy (over 

94%), with negligible differences (0.02%-

0.35%). Precision and Recall exceeded 97% and 

92%, respectively, for both models, indicating 

robust attack detection capabilities.  

At w = 0.5, despite an slightly increase in 

training time (attributed to additional iterations 

required to confirm the lack of further 

improvement) and equivalent parameter counts 

(168,529), Model 1 achieved a superior F1-

score (0.7881 compared to 0.7804), reflecting 

better balance between true positives and false 

alarm reduction. 
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Figure 7. F-value convergence chart of proposed model (w = 0.5) 

 
Figure 8. Validation accuracy values convergence chart of proposed model (w = 0.5)

 
Figure 9. Execution time convergence chart of proposed model (w = 0.5) 

TABLE III.  OPTIMAL CONFIGURATION AND OVERALL COMPARISON 

Model w 

Optimal 

hyperparameter set 

Total 

training 

time (s) 

Number of 

parameters 

Performance evaluation on test set 

Acc. Precision Recall 
F1-

score 

Model 0 

(Original 

method) 

0.5 
{64, 7, 5, 1, 512, 0.5, 

0.0009, 512, 20} 12736.94 168,529 0.9479 0.9831 0.9226 0.7804 

0.8 
{64, 7, 5, 3, 512, 0.1, 

0.0016, 512, 22} 
16332.09 693,841 0.9479 0.9828 0.9222 0.7976 

Model 1 

(Proposed 

method) 

0.5 

{64, 7, 5, 1, 512, 

0.2416, 0.0022, 512, 

44, 5} 

13806.38 168,529 0.9477 0.9822 0.9221 0.7881 

0.8 
{64, 7, 5, 2, 512, 0.1, 

0.0065, 512, 20, 5} 
15127.00 431,185 0.9444 0.9775 0.9201 0.7458 

 

 



Journal of Science and Technology on Information security 

 

    No 1.CS (24) 2025   69 

At w = 0.8, Model 1 demonstrated 

remarkable efficiency:  

- 37.85% fewer parameters (431,185 

compared to 693,841). 

- 7.38% reduction in total training time 

compared to Model 0. 

For the case w = 0.5, the experimental 

program stopped after 10 iterations and selected 

the 5th particle at iteration 7 (iter 7, part 5) as the 

best CNN configuration. Figure 7, Figure 8 and 

Figure 9 respectively illustrate the convergence 

behavior of F-value, validation accuracy, and 

execution time across all iterations and particles 

during the PSO optimization process for the 

proposed 1D-CNN model. 

These results underscore the effectiveness of 

the proposed early stopping mechanism, adaptive 

termination criteria and the multi-objective 

optimization function in the enhanced PSO 

algorithm, in maintaining high accuracy while 

optimizing computational resource utilization. 

 IV. CONCLUSION 

This study proposes an optimization method 

for 1D-CNN model in IoT attack detection using 

the PSO algorithm. The key contributions include:  

- An enhanced PSO algorithm with 

automatic termination criteria based on 

convergence analysis;  

- Integration of an early-stopping mechanism 

with optimized patience thresholds to prevent 

overfitting and reduce computational overhead in 

1D-CNN training;  

- A multi-objective optimization function that 

balances detection accuracy and execution time. 

Experimental results demonstrate that the 

proposed method achieves significant reductions 

in execution time (up to 63.69%) and parameter 

count (37.85%) compared to the baseline model, 

while maintaining high detection accuracy (over 

94%). These outcomes validate its efficacy in 

resource optimization for edge devices.  

However, the method occasionally exhibits 

slight declines in accuracy when prioritizing 

execution time optimization, highlighting the 

need for further research into adaptive weight 

calibration. Current limitations also include the 

lack of real-time performance evaluations in 

dynamic environments and cross-dataset 

validation, which restricts generalizability. Our 

future work will focus on testing the method 

across diverse datasets and evaluating its 

performance on real-world resource-constrained 

IoT edge devices. This research has paved the way 

for deploying lightweight, high-efficiency models 

in IoT security systems with stringent resource 

constraints, emphasizing the trade-off between 

computational efficiency and detection reliability.  
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