
Journal of Science and Technology on Information security

 No 1.CS (24) 2025 53

Le Thi Hong Van, Nguyen Quang Minh, Pham Van Huong*, Nguyen Hieu Minh

Abstract—This study proposes a

hyperparameter optimization method for one-

dimensional convolutional neural network using

the Particle Swarm Optimization (PSO) algorithm

based on a Pareto multi-objective approach to

improve the performance of IoT attack detection

systems. Specifically, this study enhances the PSO

algorithm by introducing an automatic

termination criterion for optimization loops and

proposes an early stopping mechanism, along with

the optimization of the early stopping patience

during the 1D-CNN model training process,

thereby reducing computational costs and aligning

with the resource-constrained hardware

conditions of IoT. Additionally, a multi-objective

optimization function is developed to balance

detection performance and resource efficiency by

combining validation accuracy with the 1D-CNN's

execution time. The proposed method is evaluated

on the Edge-IIoTset dataset. Experimental results

demonstrate that the optimized model reduces

execution time by 48-63% compared to the

baseline model while maintaining high accuracy

(over 94%). This research not only provides a

practical solution for IoT security but also

pioneers a novel approach to integrating

evolutionary algorithms into adaptive deep

learning systems and introduces a flexible method

for hardware-constrained devices.

 Tóm tắt—Nghiên cứu này đề xuất một phương

pháp tối ưu hóa siêu tham số cho mạng nơ-ron tích

chập một chiều (1D-CNN) bằng thuật toán tối ưu

bầy đàn (Particle Swarm Optimization - PSO), dựa

trên cách tiếp cận đa mục tiêu Pareto, nhằm nâng

cao hiệu quả của các hệ thống phát hiện tấn công

IoT. Cụ thể, nghiên cứu đã cải tiến thuật toán PSO

bằng việc đề xuất một tiêu chí dừng tự động cho các

vòng lặp tối ưu hóa và đề xuất cơ chế dừng sớm,

cùng với việc tối ưu ngưỡng dừng sớm cho quá trình

huấn luyện mô hình 1D-CNN, giúp giảm chi phí

tính toán và phù hợp với điều kiện tài nguyên phần

cứng hạn chế của IoT. Ngoài ra, một hàm tối ưu đa

mục tiêu đã được xây dựng, kết hợp giữa độ chính

xác trên tập dữ liệu xác thực và thời gian thực thi

của mô hình 1D-CNN, đảm bảo cân bằng giữa hiệu

suất phát hiện và hiệu quả tài nguyên. Phương pháp

đề xuất được đánh giá trên bộ dữ liệu Edge-IIoTset.

Kết quả thực nghiệm cho thấy mô hình đề xuất giúp

giảm thời gian thực thi từ 48-63% so với mô hình

gốc mà vẫn duy trì độ chính xác cao (trên 94%).

Nghiên cứu không chỉ cung cấp một giải pháp thực

tiễn cho vấn đề bảo mật thiết bị IoT mà còn mở ra

hướng tiếp cận mới trong việc tích hợp các thuật

toán tiến hóa vào các hệ thống học sâu tự động và

giới thiệu một phương pháp linh hoạt cho các thiết

bị có ràng buộc về phần cứng.

Keywords— IoT attack detection, one-dimensional

convolutional neural network (1D-CNN), particle swarm

optimization (PSO), hyperparameter optimization (HPO),

multi-objective optimization.

Từ khóa—Phát hiện tấn công IoT, mạng nơ-ron tích

chập một chiều, tối ưu bầy đàn, tối ưu hóa siêu tham số, tối

ưu hóa đa mục tiêu.

I. INTRODUCTION

The Internet of Things (IoT) has

revolutionized industries, healthcare, and smart

cities through seamless connectivity and

automation. However, the exponential growth

of IoT devices projected to exceed 30 billion by

2030, according to Vailshery's research [1], has

introduced unprecedented security challenges.

These resource-constrained devices, limited in

energy, memory, and processing power, often

become prime targets for Distributed Denial-

of-Service (DDoS) attacks, polymorphic

malware, and zero-day vulnerability exploits.

A Novel Approach for 1D-CNN

Hyperparameter Optimization in IoT Attack

Detection using Particle Swarm Optimization

DOI: https://doi.org/10.54654/isj.v1i24.1097

This manuscript was received on March 28, 2025. It was

reviewed on May 10, 2025, revised on June 6, 2025 and

accepted on June 9, 2025.

* Corresponding author

Journal of Science and Technology on Information security

54 No 1.CS (24) 2025

Traditional signature-based or rule-defined

Intrusion Detection Systems (IDS) prove

increasingly ineffective against evolving,

sophisticated threats [2]. This underscores an

urgent demand for automated, adaptive, and

resource-efficient solutions, particularly within

the context of IoT hardware's inherent

computational limitations.

Figure 1 illustrates the exponential growth of

global IoT connections from 2022 to 2033,

highlighting both their transformative potential

and the accompanying security risks [1]. The

growing reliance on IoT in critical infrastructure

systems—such as smart grids and industrial

monitoring systems—renders their protection a

matter of critical importance.

Figure 1. Number of IoT connections worldwide

from 2022 to 2023, with forecasts from 2024 to 2033

In this context, deep learning has emerged

as a promising tool for IoT attack detection due

to its capacity to automatically extract features

from raw data. CNN deep learning models are

not only suitable for image data, but also

adapted to process sequence and stream data in

IDS for IoT, which can enhance the detection of

zero-day attacks and improve system stability.

Combining CNN with configuration

optimization methods, especially metaheuristic

algorithms, is becoming a potential research

direction to further improve detection efficiency

and reduce computational costs in practical IoT

systems [5, 14].

Among CNN models, one-dimensional

convolutional neural networks (1D-CNN) have

demonstrated exceptional advantages in

processing time-series data, such as network

traffic, by employing sliding filters to detect

anomalous patterns without requiring manual

feature engineering [3]. However, the

performance of 1D-CNN heavily relies on

hyperparameter selection (e.g., number of

layers, filter size, learning rate). Optimizing

these parameters is typically performed

manually or via grid search, which is time-

consuming and inefficient in high-dimensional

parameter spaces.

While studies have proposed evolutionary

algorithms, such as Particle Swarm

Optimization, to automate hyperparameter

tuning, most fail to account for the resource-

constrained hardware environments during

model training, resulting in high computational

costs and impractical real-world deployment. To

address the dual challenge of balancing

performance optimization and resource

efficiency, the Pareto multi-objective

optimization principle serves as a strategic

framework. This approach identifies a Pareto

optimal solution set (Pareto Front), where no

objective (e.g., accuracy) can be improved

without degrading another (e.g., processing

time). Building on foundational studies [4, 5] in

multi-objective hyperparameter optimization for

CNNs, this research advances a dynamically

balanced solution that harmonizes model

efficacy with practical deployability in resource-

limited IoT ecosystems.

This paper focuses on optimizing 1D-CNN

configurations for IoT attack detection through

three primary contributions:

- Enhancing the PSO algorithm by introducing

adaptive termination criteria for optimization

loops, reducing computational overhead while

maintaining convergence efficiency.

- Integrating an early-stopping mechanism

with optimized early-stopping patience

hyperparameter tuning to minimize training time

without compromising detection accuracy.

- Proposing a novel multi-objective

optimization function that jointly maximizes

classification accuracy and minimizes

execution time, ensuring models are both high-

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 55

performing and resource-efficient for

deployment on edge devices.

The structure of our paper is as follows:

Section II - Presents a review of related works.

Section III - Covers the theoretical background.

Section IV - Details the proposed method.

Section V - Describes the experimental setup

and evaluation of the approach. Section VI -

Concludes the paper and suggests future

research directions.

II. RELATED WORKS

Kilichev et al. [6] presented a study focused

on optimizing nine hyperparameters of 1D-CNN

using Genetic Algorithms (GA) and Particle

Swarm Optimization for network intrusion

detection, with potential applications in IoT. The

experiments utilized the UNSW-NB15, CIC-

IDS2017, and NSL-KDD datasets. GA and PSO

were employed to optimize parameters such as

the number of filters, kernel size, pooling size,

number of dense layers, dropout rate, learning

rate, batch size, and number of epochs. Both

algorithms significantly enhanced model

performance, with GA achieving accuracies of

99.31%, 99.71%, and 99.63% across the three

datasets, while PSO attained 99.28%, 99.74%,

and 99.52%, respectively. When compared to

other CNN and hybrid models, the optimized

approach demonstrates superior detection

capabilities. However, the study highlighted that

neither optimization method universally

outperformed the other; instead, the efficacy of

GA and PSO was contingent on specific dataset

characteristics. The authors proposed future

research directions, including the exploration of

additional optimization algorithms, multi-

objective optimization strategies, and validation

on new datasets.

El-Ghamry et al. [7] proposed a CNN-based

intrusion detection system optimized via

Particle Swarm Optimization for smart

agriculture - an IoT application aimed at

mitigating cybersecurity risks posed by network

attacks. The study utilized the NSL-KDD

dataset to evaluate the performance of pre-

trained CNN architectures (VGG16, Xception,

Inception) following PSO-driven

hyperparameter tuning. PSO was employed to

optimize critical hyperparameters, including

dropout rate, early-stopping patience, the

number of frozen layers, learning rate, and the

number of epochs. The findings revealed that

the PSO-optimized models significantly

enhanced performance metrics, outperforming

their non-optimized counterparts. This research

underscores the potential of PSO in improving

intrusion detection capabilities within specific

IoT contexts, such as smart agriculture.

Kan et al. [8] introduced a 1D-CNN-based

method for detecting network intrusions in IoT,

where hyperparameters are optimized using

Adaptive Particle Swarm Optimization (APSO),

an enhanced variant of PSO. APSO employs an

adaptively varying inertia weight based on the

fitness value, which balances exploration and

exploitation in the search space, thereby

addressing some limitations of traditional PSO.

The study utilized a real-world dataset from nine

IoT devices, encompassing attack types such as

Ack, COMBO, Junk, Scan, Syn, TCP, UDP, and

UDPplain. The fitness function was defined as

the cross-entropy loss on the validation set after

the initial training iteration of the CNN. The

results demonstrated that the APSO-CNN model

outperformed traditional methods such as SVM,

FNN, and manually configured CNN (R-CNN)

across all five evaluation metrics. However, the

optimization process of APSO can be time-

consuming; therefore, the authors suggested

future research directions including improving

the optimization algorithm and reducing

computational complexity.

Bahaa et al. [9] proposed a hybrid

optimization algorithm, combining Adaptive

Particle Swarm Optimization (APSO) and Whale

Optimization Algorithm (WOA), termed APSO-

WOA, to optimize hyperparameters of 1D-CNN

for detecting attacks in IoT networks. The

APSO-WOA algorithm optimizes 10

hyperparameters, including the number of filters,

kernel size, activation function, dropout rate,

number of neurons in the fully connected layers,

batch size and learning rate, with the fitness

function defined as the cross-entropy loss. The

method was evaluated on the N-BaIoT dataset,

Journal of Science and Technology on Information security

56 No 1.CS (24) 2025

comprising 115 features, and compared against

models such as APSO-CNN, SVM, and FNN

(Feedforward Neural Network). Experimental

results demonstrated that APSO-WOA-CNN

improved accuracy by 1.25% and precision by

1% compared to APSO-CNN, while

significantly outperforming the other methods,

confirming the effectiveness of the approach in

detecting a diverse range of IoT attacks.

Nevertheless, the optimization process still

requires considerable computational time. Future

research directions include incorporating other

optimization algorithms (e.g., ant colony

optimization, genetic algorithms) to enhance

computational efficiency, as well as integrating

data preprocessing techniques to select the most

effective features.

Yang et al. [10] proposed an intrusion

detection system (IDS) leveraging transfer

learning and ensemble learning, utilizing CNN

models with hyperparameters optimized via

Particle Swarm Optimization. The optimized

hyperparameters include the number of epochs,

batch size, early-stopping patience, learning

rate, dropout rate, and number of frozen layers.

The study employed two datasets: Car-Hacking

and CICIDS2017, with hyperparameter tuning

primarily focused on CICIDS2017, as the

default model configuration already achieved

near-perfect accuracy (approximately 100%) on

the Car-Hacking dataset. The proposed system

attained a detection rate and F1-score exceeding

99.25% across both datasets, demonstrating its

effectiveness in identifying cyberattacks within

Internet of Vehicles (IoV) systems. However,

the authors highlighted a critical limitation: the

system’s performance heavily depends on

dataset diversity and richness, which may

hinder its generalization in more complex, real-

world scenarios.

Aguerchi et al. [11] focused on developing a

novel method for breast cancer detection by

optimizing CNN models using the Particle Swarm

Optimization algorithm. The proposed PSOCNN

model comprises four primary stages and was

evaluated on the DDSM and MIAS datasets,

achieving impressive accuracy rates of 98.23%

(DDSM) and 97.98% (MIAS), surpassing

competing algorithms. However, the study

exhibits several limitations, including the lack of

testing on a broader range of diverse datasets, the

absence of comparisons regarding training time

and computational cost with traditional methods,

and the optimization being limited to a basic set of

hyperparameters without extending to other

critical parameters such as the number of epochs

and the number of convolutional layers.

In summary, existing studies have

demonstrated the efficacy of PSO in optimizing

hyperparameters for 1D-CNN-based models.

However, these works face key limitations: (1)

they primarily focus on optimizing a limited

subset of hyperparameters; (2) they are restricted

to specific IoT datasets, limiting generalizability;

and (3) they do not address the Pareto multi-

objective optimization problem, which is critical

for balancing competing objectives like accuracy

and computational efficiency in resource-

constrained IoT environments.

Figure 2. The architecture of the employed 1D-CNN model

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 57

III. BACKGROUND

A. 1D-CNN model

In this study, the one-dimensional

convolutional neural network (1D-CNN) was

selected as the primary model due to the

following advantages:

- Suitability for sequential data: Unlike 2D-

CNN (commonly used for image processing),

1D-CNN operates on unidimensional data. It

scans through sequential data to extract local

patterns, such as anomalous traffic signatures

within short time intervals.

- Computational efficiency: Compared to

2D-CNN, 1D-CNN have fewer parameters and

lower computational demands. For data of

size N × N and a filter of size K × K, the

computational complexity of 2D-CNN

is O(N2K2), whereas for 1D-CNN, it reduces

to O(NK). This efficiency is critical for

deploying models on IoT devices with

constrained processing power and memory.

- Automatic feature learning: 1D-CNN

automatically extract intricate features from

sequential data without relying on manually

feature extraction steps required in traditional

machine learning, thereby reducing human effort

and potential errors.

The 1D-CNN architecture used for

hyperparameter optimization in this work

follows a structure similar to that proposed by

Kilichev et al. [6]. The detailed architecture of

the 1D-CNN model is illustrated in Figure 2.

The model is built using a sequential

structure with two primary convolutional blocks.

Each block consists of a convolutional layer

(Conv1D) with ReLU activation, followed by a

max pooling layer (MaxPooling1D). Subsequent

to the convolutional blocks, a Dropout layer is

incorporated to mitigate overfitting. A Flatten

layer then transforms the multidimensional

output into a one-dimensional vector. The final

segment of the model includes multiple fully

connected (Dense) layers, each activated by

ReLU and succeeded by a Dropout layer. The

output layer employs a Softmax activation

function, making the architecture suitable for

multiclass classification tasks.

The model is configured with the Adam

optimizer and trained using the categorical cross-

entropy loss function.

B. Particle Swarm Optimization

The PSO algorithm is a metaheuristic

optimization technique developed by James

Kennedy and Russell Eberhart in 1995. Inspired

by the movement behavior of animal swarms in

nature, such as flocks of birds, schools of fish, or

other organisms, PSO simulates how individuals

(particles) navigate a search space by leveraging

their own experience and information from

neighboring particles to progress toward the

optimal solution. Designed to address complex

optimization problems, PSO efficiently explores

high-dimensional solution spaces without

relying on gradient-based methods.

Figure 3 illustrates the workflow of the PSO

algorithm.

Figure 3. PSO algorithm flowchart

The PSO algorithm operates by maintaining

a population of particles, each representing a

potential solution to the optimization problem.

The search for the optimal solution involves the

following steps:

Journal of Science and Technology on Information security

58 No 1.CS (24) 2025

Step 1: Initialize population

A swarm of particles is randomly generated

within the search space. Each particle is assigned

an initial position 𝑥𝑖 (where i denotes the particle

index) and an individual velocity 𝑣𝑖.

Step 2: Evaluate fitness

Each particle’s quality is assessed using a

predefined fitness (objective) function, which

quantifies its suitability as a solution to the

optimization problem.

Step 3: Updating local best (pbest) and

global best (gbest)

After evaluating the fitness values, the local

best position (𝑝𝑏𝑒𝑠𝑡𝑖) of each particle is updated.

If the fitness of its current position (𝑥𝑖) surpasses

that of its previous 𝑝𝑏𝑒𝑠𝑡𝑖, the local best is

updated as follows:

𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑥𝑖 (1)

Subsequently, the algorithm compares the

particle’s fitness with the current global best value

(gbest). If the particle’s fitness exceeds F(gbest),

where F(x) denotes the fitness function evaluated

at gbest, the global best is updated:

𝑔𝑏𝑒𝑠𝑡 = 𝑥𝑖 (2)

Step 4: Update velocity and position

Each particle adjusts its velocity based on

two guiding factors:

(i) Personal Experience (pbest): The best

position the particle has individually achieved.

(ii) Swarm Intelligence (gbest): The best

position discovered by any particle in the entire

population.

The new velocity is calculated using the

formula:

𝑣𝑖
(𝑡+1)

= 𝜔 ∗ 𝑣𝑖
(𝑡)

+ 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 −

𝑥𝑖
(𝑡)

) + 𝑐2 ∗ 𝑟2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
(𝑡)

) (3)

where:

- 𝜔: Inertia weight, controlling the influence

of the previous velocity.

- 𝑐1, 𝑐2: Acceleration coefficients

for pbest and gbest, respectively.

- 𝑟1, 𝑟2: Random values uniformly distributed

in [0, 1].

- 𝑣𝑖
(𝑡)

: Velocity of particle i at iteration t.

- 𝑥𝑖
(𝑡)

: Position of particle i at iteration t.

- 𝑝𝑏𝑒𝑠𝑡𝑖: Personal best position of particle i.

- 𝑔𝑏𝑒𝑠𝑡: Global best position of the

swarm.

The position of particle i at the next iteration

t+1 is then updated using the following equation:

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

 (4)

Step 5: Check termination criteria

The algorithm verifies whether termination

criteria—such as reaching the maximum

number of iterations or achieving a satisfactory

fitness value (convergence) - is met. If satisfied,

the algorithm terminates and returns the global

best solution gbest. Otherwise, it iterates back

to Step 2.

In this study, each particle in the PSO

algorithm represents a set of hyperparameters S,

and the population P encompasses all feasible

hyperparameter combinations. Our objective is

to identify the optimal hyperparameter

set S*∈P that maximizes the performance of the

1D-CNN model.

Definition 1 – Population (Swarm)

The population P is defined as:

P = {S1, S2, …, SN} (5)

where: Si (i =1..N) denotes a

hyperparameter set of the 1D-CNN model, and

N is the population size (number of particles).

Definition 2 – Individual (Particle)

An individual S is defined as:

S = {s1, s2, …, sM} (6)

 where: si (i =1..M) represents a

hyperparameter value, and M is the number of

hyperparameters in the 1D-CNN model.

Definion 3 – Optimization Objective

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 59

The objective of the optimization problem is

to find the optimal hyperparameter set S* that

satisfies:

𝑆∗ = arg max
𝑆∈𝑃

𝐹(𝑆) (7)

where: S: A specific hyperparameter set, P:

The search space of all possible hyperparameter

sets, F(S): The fitness function evaluating the

1D-CNN model’s performance with

hyperparameter set S.

III. PROPOSED METHOD

A. Overall workflow

In this study, we propose an integrated model

incorporating the Particle Swarm Optimization

(PSO) algorithm to automatically optimize

hyperparameters for a one-dimensional

convolutional neural network (1D-CNN) to

address attack detection in IoT systems. This

comprehensive method is designed as a

sequential process, combining model training

with multi-objective optimization.

The process begins by initializing a

population of individuals, each representing a

distinct hyperparameter set S. These

hyperparameter configurations are utilized to

train and evaluate the 1D-CNN model on two

datasets: training data and validation data.

After training, the model is assessed based on

the fitness value of each hyperparameter set. The

PSO algorithm then updates the local best (pbest)

and the global best (gbest) using these evaluation

results. Concurrently, the velocity and position

of each individual are adjusted to guide the

search toward improved solutions.

This iterative cycle continues until

predefined termination criteria is met. If the

stopping condition is not satisfied, the process

resumes with training and updating new

hyperparameters. Otherwise, the optimal 1D-

CNN model, along with its corresponding

hyperparameter set S*, is obtained.

Finally, the optimized model is evaluated on

a test dataset to evaluate its effectiveness and

generalization capability.

Figure 4 illustrates the key steps in the 1D-CNN

training and PSO-based optimization process.

Figure 4. Flowchart of the proposed PSO-based 1D-

CNN optimization method

B. Enhanced PSO for 1D-CNN optimization

algorithm

The following part presents Algorithm,

which integrates PSO to optimize

hyperparameters for a one-dimensional

convolutional neural network (1D-CNN). This

algorithm comprises two

phases: initialization and iterative optimization,

designed to systematically identify the optimal

hyperparameter configuration.

Algorithm 1: Hyperparameter optimization for

1D-CNN model using PSO

Input:

-N: Number of individuals in the population (a

set of hyperparameter configurations S).

-M: Number of hyperparameters in an

individual (dimensionality of the search space).

-hyperparameter_bounds: Search range for

each hyperparameter.

-w: Inertia weight, controlling the influence of

the previous velocity.

Journal of Science and Technology on Information security

60 No 1.CS (24) 2025

-c1: Cognitive coefficient (personal), learning

from individual experience.

-c2: Social coefficient, learning from the

swarm.

-stopping_threshold: Minimum improvement

threshold.

-max_stagnation: Maximum number of

iterations without improvement.

Output:

gbest: The optimal hyperparameter configuration

S* for the 1D-CNN model.

Initialization

1 FOR i = 1 to N DO

2 position[i] ← Random position of

individual i within hyperparameter_bounds

3 velocity[i] ← Random velocity

4 pbest_position[i] ← NULL

5 pbest_fitness[i] ← NULL

6 END FOR

7 gbest_position ← NULL

8 gbest_fitness ← NULL

9 previous_gbest ← NULL

10 no_improvement_count ← 0

11 iteration ← 0

Optimization Process

12 WHILE no_improvement_count <

max_stagnation DO

13 FOR i = 1 to N DO

14 fitness ← evaluate_fitness(position[i])

15 IF fitness > pbest_fitness[i]:

16 pbest_position[i] ← position[i]

17 pbest_fitness[i] ← fitness

18 END IF

19 IF fitness > gbest_fitness:

20 gbest_position ← position[i]

21 gbest_fitness ← fitness[i]

22 END IF

23 END FOR

24 FOR i = 1 to N DO

25 FOR j = 1 to M DO

26 r1, r2 ← Random numbers in the range

[0, 1]

27 velocity[j][i] ← ω ∗ velocity[j][i] +

c1 ∗ r1 ∗ (pbest[i][j] − position[j][i]) +

c2 ∗ r2 ∗ (gbest[j] − position[j][i])

28 position[j][i] ← position[j][i] +

velocity[j][i]

29 position[j][i] ← clip(position[j][i],

hyperparameter_bounds[j])

30 END FOR

31 END FOR

32 IF previous_gbest is not NULL:

33 improvement ← gbest_fitness -

previous_gbest

34 IF improvement <= stopping_threshold:

35 no_improvement_count ←

no_improvement_count + 1

36 ELSE:

37 no_improvement_count ← 0

38 END IF

39 END IF

40 previous_gbest ← gbest_fitness

41 iteration ← iteration + 1

42 END WHILE

43 RETURN gbest

Explanation of steps in the algorithm:

1. Initialization

- Initialize N particles with randomized

positions and velocities within the

hyperparameter search space.

- Set coefficients c1 (cognitive acceleration),

c2 (social acceleration), and w (inertia weight) to

regulate particle velocity and movement

behavior.

- Establish initial pbest (personal best

position) and gbest (global best position).

- Initialize termination condition trackers and

iteration counters.

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 61

2. Optimization Process

The algorithm iterates until meeting

termination criteria (e.g., no improvement),

comprising three phases:

2.1. Evaluate population

- Evaluate fitness: Evaluate the 1D-CNN

model’s performance using each particle’s

current hyperparameters.

- Update local best: Update pbest if the current

fitness exceeds the particle’s historical best.

- Update global best: Update gbest if the

current fitness outperforms the global best, while

resetting the stagnation counter.

2.2. Update population (velocity & position)

- Adjust particle velocity using inertial,

cognitive, and social components

- Update particle positions while enforcing

search space boundaries.

2.3. Check termination condition: Assess

fitness improvement and increment the stagnation

counter if no significant progress occurs.

 3. Terminate and return output: Upon

meeting termination criteria, return gbest

(optimal hyperparameters S*) and the auto-saved

best model.

In the work of Kilichev et al. [6], the PSO

algorithm employs a fixed loop mechanism with

a predefined maximum number of iterations.

This approach generally leads to two main

limitations:

(1) Premature termination before

convergence, yielding suboptimal solutions.

(2) Redundant post-convergence

iterations, wasting computational resources

(CPU/GPU time, energy).

To address these issues, we replace static

termination with an adaptive stopping criterion

combining that combines a minimum

improvement threshold with a maximum number

of consecutive iterations without improvement:

- Minimum improvement threshold

(stopping threshold): This represents the

minimum fitness improvement required between

two successive iterations to be considered as

“progress”. In this study, it is set to 10-4. This

value was determined through experiments with

three threshold levels: 10⁻³, 10⁻⁴ và 10⁻⁵ using the

dataset. The results demonstrate that a threshold

of 10⁻⁴ achieves an optimal balance between

convergence speed and accuracy. Compared to

10⁻³, it enhances convergence speed, while

relative to 10⁻⁵, it delivers comparable

performance with reduced computational time.

- Maximum stagnation iterations (max

stagnation): This allows the algorithm to

terminate if the global fitness (gbest) does not

significantly improve over a specified number

of consecutive iterations. In this model, it is set

to 3, based on an analysis balancing exploration

capability and computational efficiency, tested

with values of 2, 3, and 4 iterations. The

findings indicate that 3 iterations allow the

algorithm sufficient time to overcome local

noise and temporary stagnation, while

preventing unnecessary computational costs

and avoiding premature termination due to

random fluctuations.

These parameter values were derived from a

systematic study evaluating six key criteria:

convergence speed, improvement magnitude,

noise resistance, stability, avoidance of local

optima, and computational efficiency. The

results confirm that a threshold of 10⁻⁴

combined with a stagnation limit of 3 iterations

optimizes the PSO algorithm’s performance,

ensuring accuracy, efficiency, and robustness

against noise.

This adaptive stopping mechanism offers

several important benefits:

(1) Computational efficiency: Eliminates

redundant post-convergence iterations.

(2) Overfitting prevention: Limits excessive

optimization that may degrade model

generalizability.

(3) Dynamic adaptation: Self-adjusts to

diverse search spaces by monitoring real-time

optimization trends rather than relying on fixed

iteration counts.

Journal of Science and Technology on Information security

62 No 1.CS (24) 2025

C. Hyperparameter optimization

Based on related research results mentioned

above, in this study, we propose a set of

hyperparameters S, to be optimized for the 1D-

CNN model, defined as follows:

S = {s₁, s₂, s₃, s₄, s₅, s₆, s₇, s₈, s₉, s₁₀} (8)

where:

- s₁: Number of filters - determines the

model’s feature extraction capability.

- s₂: Kernel size - influences the local

analysis scope of the data.

- s₃: Pooling size - affects the degree of

feature information compression.

- s₄: Number of dense layers - governs the

depth of high-level feature learning.

- s₅: Number of neurons in dense layers -

impacts nonlinear representation capacity.

- s₆: Dropout rate - controls regularization

strength to prevent overfitting.

- s₇: Learning rate - adjusts the convergence

speed of the learning process.

- s₈: Batch size - influences training stability

and speed.

- s₉: Number of epochs - determines the total

learning duration.

- s₁₀: Early-stopping patience - regulates the

optimal stopping point.

This study integrates an early-stopping

mechanism into the 1D-CNN model, a

significant enhancement compared to the

original approach by Kilichev et al. [6]. The

mechanism is designed to automatically halt

training when performance plateaus after a

predefined number of epochs, thereby mitigating

overfitting and optimizing training time.

Furthermore, our research incorporates

early-stopping patience into the list of

hyperparameters optimized via the PSO

algorithm. This allows the 1D-CNN model to

automatically adjust the maximum waiting

epochs before termination (e.g., 5, 10, or 15

epochs) based on data characteristics and

convergence process.

The early-stopping mechanism is configured

with several critical parameters, including

monitor and mode. For the monitor parameter,

the study employs 'val_accuracy' to track

validation accuracy. Correspondingly, the mode

parameter is set to 'max' (training stops when

accuracy ceases to improve).

Table I presents the list of hyperparameters

optimized for the 1D-CNN model, along with

their respective value ranges.

TABLE I. RANGE OF OPTIMIZED

HYPERPARAMETER VALUES

Symbols Hyperparamter Range

s₁ Number of filters [16, 32, 64]

s2 Kernel size [3, 5, 7]

s3 Pooling size (2, 5)

s4
Number of dense

layers
(1, 3)

s5
Number of neurons in

dense layers
[128, 256, 512]

s6 Dropout rate (0.1, 0.5)

s7 Learning rate (10−5, 10−2)

s8 Batch size
[32, 64, 128,

256, 512]

s9 Number of epochs (20, 50)

s10
Early-stopping

patience
(5, 10)

Unlike the approach in [6], we selectively

narrow the value domains of certain

hyperparameters. Combined with PSO’s velocity

update mechanism, this strategy maintains

effective exploration while filtering out

infeasible configurations, reducing overfitting

risks and computational waste. This narrowing

reflects domain knowledge-driven design,

balancing model capacity with the resource

constraints of IoT systems.

The proposed hyperparameter, early-

stopping patience (s10), has its value range

established through a series of preliminary

experiments conducted on the dataset prior to the

main model improvement phase. We observed

that patience values smaller than 5 epochs often

result in premature stopping, whereas values

exceeding 10 epochs fail to provide significant

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 63

accuracy improvements while unnecessarily

prolonging training time.

The findings demonstrate that a patience

range of 5-10 epochs not only aligns with the

convergence properties of the PSO algorithm but

also effectively supports the learning capacity of

the 1D-CNN model on IoT data. This ensures the

model is afforded sufficient time to capture

critical patterns without falling into overfitting or

squandering computational resources.

In the problem of optimizing a 1D-CNN

model for IoT attack detection, designing a

mechanism to map particle positions to model

hyperparameters plays a decisive role in the

effectiveness of the PSO algorithm. Since PSO

typically operates in a continuous space, while

many 1D-CNN hyperparameters require discrete

or integer values, a suitable conversion

mechanism is essential. This mapping process

defines the search space S—the set of feasible

1D-CNN configurations—enabling the PSO

algorithm to efficiently explore S despite

operating in a continuous space.

The mapping method addresses two main

hyperparameter types:

• Continuous hyperparameters: Directly

mapped from the PSO search space.

• Discrete hyperparameters: Mapped via a

two-step process: continuous value quantization

followed by mapping to predefined value sets.

The mapping function is constructed based

on three main principles:

(1) Direct dimension-to-parameter mapping

Each dimension in the particle’s position

vector corresponds to a specific 1D-CNN

hyperparameter, as defined by the params_keys

list. This mechanism establishes a one-to-one

relationship between the PSO space and the

parameter space, enabling simultaneous

optimization of heterogeneous parameters.

params_keys = ['num_filters', 'kernel_size',
..., 'patience']

for j, key in enumerate(params_keys):

 value = particles[j][i]

(2) Continuous value quantization

Integer hyparameters are quantized from the

particle’s continuous values using rounding. This

resolves the paradox between PSO’s continuous

space and the discrete nature of many

hyperparameters.

if key in ['num_filters', 'kernel_size',
..., 'patience']:

value = int(round(value))

(3) Value constraint to predefined sets

For hyperparameters with finite value

domains, a clipping index technique selects

values from predefined sets. Specifically,

quantized integer values are mapped to indices of

the value_choices array, with an upper bound set

to the array length to prevent index overflow.

This confines the search space to empirically

validated values.

value_choices = [16, 32, 64]

value=value_choices[min(int(value),
len(value_choices)-1)]

The integration of quantization and domain-

based constraints allows PSO to avoid

meaningless search regions while retaining

flexibility in exploring optimal configurations

for IoT attack detection.

D. Multi-objective optimization function

The optimization of the 1D-CNN model for

IoT attack detection employs a global multi-

objective optimization function, formulated as:

Maximize 𝐅(𝑆) = {𝑓1(𝑆), 𝑓2(𝑆)} (9)

where:

- F: Global objective function.

- f1: Accuracy objective function.

- f2: Execution time objective function.

- S: Hyperparameter set of the 1D-CNN model.

These functions are defined and constructed

below.

Definition 4 – Accuracy Objective Function

Accuracy is the core metric for evaluating the

classification performance of the model. The

accuracy objective function is based on the

accuracy in validation dataset, calculated as the

Journal of Science and Technology on Information security

64 No 1.CS (24) 2025

ratio of correctly classified samples to the total

validation samples:

𝑓1 =
TP+TN

TP+TN+FP+FN
 (10)

where:

- TP (True Positives): Number of correctly

identified attack samples.

- TN (True Negatives): Number of correctly

identified normal samples.

- FP (False Positives): Number of normal

samples misclassified as attacks.

- FN (False Negatives): Number of attack

samples misclassified as normal.

In terms of dimensionality, f1 is represented

as a dimensionless ratio with values ranging from

0 to 1, where 0 indicates the lowest accuracy and

1 indicates perfect accuracy. Therefore, no

additional normalization steps are required for

this function.

The goal is to maximize f1 to ensure accurate

attack detection. However, overemphasizing

accuracy may lead to overly complex models

with excessive computational demands.

Definition 5 – Execution Time Objective

Function

Execution time reflects the computational

efficiency of the model, which is critical for real-

time IoT systems. This value is measured as the

total time for model training and evaluation on

validation datasets.

To normalize the execution time value, this

study constructs the function f2 as an inverse

exponential function as follows:

𝑓2 =
1

𝑒𝑘.𝑇
 (11)

where: k is the decay coefficient (unit: s-1),

determined as the reciprocal of the reference time

T0 (𝑘 =
1

𝑇0
); T is the execution time of the 1D-

CNN model (unit: s).

The normalization mechanism of f2 relies on

the principle of nonlinear exponential

transformation to map execution time values

from the extended domain (0,+∞) to the bounded

domain (0,1). Specifically, as the execution time

T approaches 0, the value of f2 approaches 1

(optimal); conversely, as T increases towards

infinity, f2 asymptotically approaches 0

(suboptimal). Notably, the use of the inverse

exponential function also eliminates the unit of

f2. In the expression k.T, k has the unit s-1 and T

has the unit s, making k.T a dimensionless

quantity. Consequently, f2 is also dimensionless.

The decay coefficient k plays a crucial role in

adjusting the degree of influence of the execution

time on the value of f2. Specifically:

- Larger k (corresponding to smaller T0):

Sharp decline in f2 as T increases, imposing

stricter penalties.

- Smaller k (corresponding to larger T0):

Reduced sensitivity to T, allowing a trade-off

between execution time and other factors.

The choice of k depends on the specific

expected range of execution time values for each

problem and the priority level for time

performance. In this study, k=0.001 (s-1) is

selected, corresponding to a reference time

T0=1000 (s), based on an analysis of the

execution time range T of the 1D-CNN model in

the IoT attack detection problem. In this

problem, the execution time typically fluctuates

between 100 and 1500 seconds, with only a few

special cases exceeding 1500 seconds.

Definition 6 – Global Objective Function

The global optimization function F is

designed to evaluate the balance between the

individual optimization objectives. The aim in

this problem is to find the maximum value of F.

The function F combines f1 and f2 through a

weighting factor w, as follows:

 F = 𝑤 × 𝑓1 + (1 − 𝑤) × 𝑓2 (12)

where: w is the weight parameter adjusting

the priority between objectives (𝑤 ∈ [0,1]).

In multi-objective optimization, w is tuned

based on the relative importance of accuracy

versus computational efficiency or specific

system requirements. Adjustments to w should

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 65

follow a cost-benefit analysis to ensure the model

satisfies IoT system constraints.

In this study, to identify the optimal weight

values, we conducted experiments with 9

different weight values ranging from 0.1 to 0.9,

with increments of 0.1, on the dataset. The

evaluation criteria were established based on

three key factors: attack detection accuracy,

execution time, and the optimization function

value (F-value). Through analysis of the results,

we observed that the weight values could be

classified into three main groups according to

their optimization characteristics.

The first group (w = 0.1-0.3) prioritizes

execution time. However, the results indicate

that an excessive focus on time optimization

significantly reduces the model’s accuracy,

achieving only 80-86%, which does not meet

the high-performance requirements for attack

detection. The second group (w = 0.4-0.6)

demonstrates a balance between objectives,

with w = 0.5 achieving an accuracy of 94.77%

and a 48.06% reduction in execution time

compared to the baseline. The third group (w =

0.7-0.9) emphasizes accuracy, with w = 0.8

attaining an accuracy of 94.41% while still

maintaining computational efficiency, reducing

execution time by 63.69% relative to the

original configuration.

The analysis reveals that while low weight

values (group 1) provide high speed, but they

lack reliability in attack detection. In contrast,

higher weight values (group 3) ensure accuracy

while preserving good computational efficiency.

Detailed experimental results for w = 0.5

(representing the second group) and w = 0.8

(representing the third group) will be presented

in the next section.

IV. EXPERIMENTS AND RESULTS

A. Dataset

The dataset used in this study is Edge-

IIoTset, developed by Ferrag et al. [12]. Edge-

IIoTset aggregates data from over 10 distinct

IoT devices, categorized into two primary

groups as follows:

(1) Normal: Comprising attack-free

samples, representing the system’s secure

operational state.

(2) Attack: Encompassing 14 attack types

across five major threat categories:

- DDoS: Distributed Denial-of-Service

attacks through protocols such as UDP (User

Datagram Protocol), TCP (Transmission Control

Protocol), HTTP (HyperText Transfer Protocol),

and ICMP (Internet Control Message Protocol).

- Injection: Including SQL Injection and

Cross-site Scripting (XSS).

- Reconnaissance: Activities such as Port

Scanning and Fingerprinting.

- Malware: Ransomware, Backdoor, and

Uploading attacks.

- MITM: Man-in-the-Middle attacks.

The sample distribution across classes in

Edge-IIoTset is illustrated in Figure 5.

The initial preprocessing steps align with

those outlined by Ferrag et al. [12], including the

removal of low-significance columns, outlier

handling, label encoding, and similar procedures.

Additionally, this study introduces a novel

method to reduce dataset memory footprint,

optimizing processing efficiency for large-scale

data. Specifically:

- For integer columns (int64): Values are

converted to smaller integer or unsigned integer

types, contingent on the int2uint flag. This

minimizes storage requirements without data

loss.

- For float columns (float64): Values are

downcast to float32, halving memory usage

while preserving high precision.

This memory reduction is critical for

handling large datasets like Edge-IIoTset,

accelerating processing speed and conserving

system resources without compromising data

integrity.

Journal of Science and Technology on Information security

66 No 1.CS (24) 2025

Figure 5. The distribution of the number of samples

within each class in Edge-IIoTset

Furthermore, we implemented a data

processing method from Kilichev et al. [13],

where a hash function is applied per column to

identify identical features. By comparing hash

values, duplicate column groups were detected

and removed. This step is vital for eliminating

redundancy, thereby enhancing model

efficiency.

After the preprocessing and cleaning

procedures, the number of features was reduced

from 95 to 86.

Finally, the dataset was partitioned into three

subsets:

- Training set: 70% of the data.

- Validation set: 10% of the data.

- Test set: 20% of the data.

B. Evaluation metrics

To evaluate the performance of the IoT

attack detection model based on 1D-CNN with

hyperparameter optimization via PSO, this study

employs Accuracy as the primary metric,

supplemented by three additional metrics:

Precision, Recall, and F1-score. The primary

metric (Accuracy) is applied to the training,

validation, and test datasets. The supplementary

metrics (Precision, Recall, F1-score) are

calculated post-training through evaluation on

the test set, providing a comprehensive overview

of the model’s effectiveness in accurately

detecting attacks and the reliability of its

predictions.

Accuracy measures the ratio of correct

predictions to the total number of samples,

reflecting the model’s overall classification

capability:

Accuracy =
TP+TN

TP+TN+FP+FN
 (13)

where:

- TP (True Positives): Number of correctly

identified attack samples.

- TN (True Negatives): Number of correctly

identified normal samples.

- FP (False Positives): Number of normal

samples misclassified as attacks.

- FN (False Negatives): Number of attack

samples misclassified as normal.

Precision (class-specific accuracy) quantifies

the proportion of correct predictions among all

samples predicted as a specific class:

Precision =
TP

TP+FP
 (14)

where: TP (True Positives) is the number of

correctly identified attack samples; FP (False

Positives) is the number of normal samples

misclassified as attacks.

Recall (class-specific sensitivity) measures

the proportion of correctly identified samples

relative to all actual samples of a class:

Recall =
TP

TP+FN
 (15)

where: TP (True Positives) is the number of

correctly identified attack samples; FN (False

Negatives) is the number of attack samples

misclassified as normal.

F1-score: The F1-score is the harmonic mean

of Precision and Recall.

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 67

F1 − score = 2 x
Precision x Recall

Precision+Recall
 (16)

C. Model evaluation

To evaluate the effectiveness of the proposed

method, we conducted a series of experiments on

the aforementioned dataset to compare two

models: the baseline model from the original

study [6] (Model 0) and our proposed improved

model (Model 1). Both models utilize the multi-

objective optimization function F (defined

above) with different w values (where w = 0.5

represents a balanced emphasis on accuracy and

execution time, while w = 0.8 prioritizes

accuracy more heavily).

Table II and Figure 6 presents a comparative

performance analysis between the two models,

including the F-value, validation accuracy, and

execution time.

TABLE II. PERFORMANCE AND EXECUTION TIME

COMPARISON

Model w
Max F-

value

Validation

accuracy

Execution

time (s)

Model 0

(Original

method)

0.5 0.8752 0.9474 219.45

0.8 0.9097 0.9478 278.16

Model 1

(Proposed

method)

0.5 0.9200 0.9477 113.98

0.8 0.9361 0.9441 101.00

With w = 0.5, Model 1 achieved an F-value

of 0.9200, 5.12% higher than Model 0 (0.8752).

Notably, Model 1 significantly reduced

execution time to 113.98 seconds, a 48.06%

reduction compared to Model 0 (219.45

seconds), while maintaining competitive

accuracy (a marginal 0.03% improvement over

Model 0).

When w was increased to 0.8, both models

exhibited improved F-value, but Model 1

retained superiority with an F-value of 0.9361

(the highest in the experiment), outperforming

Model 0 (0.9097) by 2.9%. Model 1 also

demonstrated markedly lower execution time

(101.00 seconds), representing a 63.69%

reduction compared to Model 0 (278.16

seconds).

Figure 6. Comparison chart of global optimal F-value,

accuracy and execution time of original model and

proposed model

Table 3 provides a comprehensive

comparison, including the optimized

hyperparameter set, overall model training time,

the number of parameters used, and the

evaluation performance on the test set.

Both models achieved high accuracy (over

94%), with negligible differences (0.02%-

0.35%). Precision and Recall exceeded 97% and

92%, respectively, for both models, indicating

robust attack detection capabilities.

At w = 0.5, despite an slightly increase in

training time (attributed to additional iterations

required to confirm the lack of further

improvement) and equivalent parameter counts

(168,529), Model 1 achieved a superior F1-

score (0.7881 compared to 0.7804), reflecting

better balance between true positives and false

alarm reduction.

Journal of Science and Technology on Information security

68 No 1.CS (24) 2025

Figure 7. F-value convergence chart of proposed model (w = 0.5)

Figure 8. Validation accuracy values convergence chart of proposed model (w = 0.5)

Figure 9. Execution time convergence chart of proposed model (w = 0.5)

TABLE III. OPTIMAL CONFIGURATION AND OVERALL COMPARISON

Model w

Optimal

hyperparameter set

Total

training

time (s)

Number of

parameters

Performance evaluation on test set

Acc. Precision Recall
F1-

score

Model 0

(Original

method)

0.5
{64, 7, 5, 1, 512, 0.5,

0.0009, 512, 20} 12736.94 168,529 0.9479 0.9831 0.9226 0.7804

0.8
{64, 7, 5, 3, 512, 0.1,

0.0016, 512, 22}
16332.09 693,841 0.9479 0.9828 0.9222 0.7976

Model 1

(Proposed

method)

0.5

{64, 7, 5, 1, 512,

0.2416, 0.0022, 512,

44, 5}

13806.38 168,529 0.9477 0.9822 0.9221 0.7881

0.8
{64, 7, 5, 2, 512, 0.1,

0.0065, 512, 20, 5}
15127.00 431,185 0.9444 0.9775 0.9201 0.7458

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 69

At w = 0.8, Model 1 demonstrated

remarkable efficiency:

- 37.85% fewer parameters (431,185

compared to 693,841).

- 7.38% reduction in total training time

compared to Model 0.

For the case w = 0.5, the experimental

program stopped after 10 iterations and selected

the 5th particle at iteration 7 (iter 7, part 5) as the

best CNN configuration. Figure 7, Figure 8 and

Figure 9 respectively illustrate the convergence

behavior of F-value, validation accuracy, and

execution time across all iterations and particles

during the PSO optimization process for the

proposed 1D-CNN model.

These results underscore the effectiveness of

the proposed early stopping mechanism, adaptive

termination criteria and the multi-objective

optimization function in the enhanced PSO

algorithm, in maintaining high accuracy while

optimizing computational resource utilization.

 IV. CONCLUSION

This study proposes an optimization method

for 1D-CNN model in IoT attack detection using

the PSO algorithm. The key contributions include:

- An enhanced PSO algorithm with

automatic termination criteria based on

convergence analysis;

- Integration of an early-stopping mechanism

with optimized patience thresholds to prevent

overfitting and reduce computational overhead in

1D-CNN training;

- A multi-objective optimization function that

balances detection accuracy and execution time.

Experimental results demonstrate that the

proposed method achieves significant reductions

in execution time (up to 63.69%) and parameter

count (37.85%) compared to the baseline model,

while maintaining high detection accuracy (over

94%). These outcomes validate its efficacy in

resource optimization for edge devices.

However, the method occasionally exhibits

slight declines in accuracy when prioritizing

execution time optimization, highlighting the

need for further research into adaptive weight

calibration. Current limitations also include the

lack of real-time performance evaluations in

dynamic environments and cross-dataset

validation, which restricts generalizability. Our

future work will focus on testing the method

across diverse datasets and evaluating its

performance on real-world resource-constrained

IoT edge devices. This research has paved the way

for deploying lightweight, high-efficiency models

in IoT security systems with stringent resource

constraints, emphasizing the trade-off between

computational efficiency and detection reliability.

REFERENCES

[1] L. S. Vailshery, "Number of IoT connections

worldwide 2022-2033" (2025), [Accessed:

01/03/2025],

https://www.statista.com/statistics/1183457/iot-

connected-devices-worldwide/.

[2] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu,

"IoT security techniques based on machine

learning: How do IoT devices use AI to enhance

security?", IEEE Signal Processing Magazine,

vol. 35, no. 5, pp. 41–49, 2018, doi:

10.1109/MSP.2018.2825478.

[3] M. K. Hooshmand and M. D. Huchaiah,

"Network Intrusion Detection with 1D

Convolutional Neural Networks", Digital
Technologies Research and Applications, vol. 1,

no. 2, pp. 66–75, 2022, doi:

10.54963/dtra.v1i2.64.

[4] L. T. H. Van, P. V. Huong, and N. H. Minh,

"The Multi-objective Optimization of the

Convolutional Neural Network for the Problem

of IoT System Attack Detection", in Modelling,

Computation and Optimization in Information
Systems and Management Sciences (MCO

2021), Lecture Notes in Networks and Systems,

vol. 363, Springer, 2021, pp. 350–360.

[5] L. T. H. Van, L. D. Thuan, P. V. Huong, and N. H.

Minh, "A New Method to Improve the CNN

Configuration for IoT Attack Detection Problem

based on the Genetic Algorithm and Multi-

Objective Approach", in 2024 1st International
Conference On Cryptography And Information

Security (VCRIS), Hanoi, Vietnam, 2024, pp. 1-9.

[6] D. Kilichev and W. Kim, "Hyperparameter

Optimization for 1D-CNN-Based Network

Intrusion Detection Using GA and PSO",

Mathematics, vol. 11, no. 17, 2023, doi:

10.3390/math11173724.

[7] A. El-Ghamry, A. Darwish and A. E. Hassanien,

"An optimized CNN-based intrusion detection

system for reducing risks in smart farming",

Internet of Things, vol. 22, 2023, doi:

10.1016/j.iot.2023.100709.

[8] X. Kan, Y. Fan, Z. Fang, L. Cao, N. N. Xiong,

D. Yang and X. Li, "A novel IoT network

intrusion detection approach based on Adaptive

Journal of Science and Technology on Information security

70 No 1.CS (24) 2025

Particle Swarm Optimization Convolutional

Neural Network", Information Sciences, vol.

568, pp. 147-162, 2021, doi:

10.1016/j.ins.2021.03.060.

[9] A. Bahaa, A. Sayed, L. Elfangary, and H.

Fahmy, "A novel hybrid optimization enabled

robust CNN algorithm for an IoT network

intrusion detection approach", PLOS ONE, vol.

17, no. 12, 2022, doi:

10.1371/journal.pone.0278493.

[10] L. Yang and A. Shami, "A Transfer Learning

and Optimized CNN Based Intrusion Detection

System for Internet of Vehicles", in ICC 2022 -
IEEE International Conference on

Communications, Seoul, Republic of Korea,

2022, pp. 2774–2779.

[11] K. Aguerchi, Y. Jabrane, M. Habba, and A. H.

El Hassani, "A CNN hyperparameters

optimization based on particle swarm

optimization for mammography breast cancer

classification", Journal of Imaging, vol. 10, no.

2, 2024, doi: 10.3390/jimaging10020030.

[12] M. A. Ferrag, O. Friha, D. Hamouda, L.

Maglaras and H. Janicke, "Edge-IIoTset: A New

Comprehensive Realistic Cyber Security

Dataset of IoT and IIoT Applications for

Centralized and Federated Learning", IEEE

Access, vol. 10, pp. 40281-40306, 2022, doi:

10.1109/ACCESS.2022.3165809.

[13] D. Kilichev, D. Turimov and W. Kim, "Next–

Generation Intrusion Detection for IoT EVCS:

Integrating CNN, LSTM, and GRU Models",

Mathematics, vol. 12, no. 4, 2024, doi:

10.3390/math12040571.

[14] P. V. Huong, L. T. H. Van, và P. S. Nguyen,

“Detecting Web Attacks Based on Clustering

Algorithm and Multi‑branch CNN,” Journal of

Science and Technology on Information

Security, vol. 2, no. 12, pp. 31–37, Jul. 2021,

doi: 10.54654/isj.v2i12.120.

ABOUT THE AUTHOR

Le Thi Hong Van

Workplace: Academy of

Cryptography Techniques, Vietnam.

Email: lthvan@actvn.edu.vn

Education: Bachelor of Information

Security (2009), Master of

Cryptography Engineering (2013),

currently pursuing a Ph.D. in Information Security at the

Academy of Cryptography Techniques.

Recent research direction: Cryptographic algorithms,

information security systems, cyber attack methods,

deep learning models, IoT system security.

Tên tác giả: Lê Thị Hồng Vân

Cơ quan công tác: Học viện Kỹ thuật mật mã.

Email: lthvan@actvn.edu.vn

Quá trình đào tạo: Kỹ sư An toàn thông tin (2009), Thạc

sỹ Kỹ thuật mật mã (2013), hiện đang là nghiên cứu sinh

ngành An toàn thông tin tại Học viện Kỹ thuật mật mã.

Hướng nghiên cứu hiện nay: Thuật toán mật mã, các hệ

thống an toàn thông tin, các phương pháp tấn công

mạng, các mô hình học sâu, bảo mật hệ thống IoT.

Nguyen Quang Minh

Workplace: Academy of

Cryptography Techniques, Vietnam.

Email: quangminhnguyen1025@gmail.com

Education: Fourth-year student,

majoring in Information Technology.

Recent research direction: Machine

learning, deep learning, AI in information security.

Tên tác giả: Nguyễn Quang Minh

Cơ quan công tác: Học viện Kỹ thuật mật mã.

Email: quangminhnguyen1025@gmail.com

Quá trình đào tạo: Sinh viên năm bốn, chuyên ngành

Công nghệ thông tin.

Hướng nghiên cứu hiện nay: Học máy, học sâu, trí tuệ

nhân tạo trong bảo mật thông tin.

Pham Van Huong

Workplace: Academy of

Cryptography Techniques, Vietnam.

Email: huongpv@actvn.edu.vn

Education: Received a Bachelor's

degree in 2005, a Master's degree

in 2008, and a Ph.D. in Software

Engineering in 2015 from the

University of Engineering and Technology, Vietnam

National University, Hanoi.

Recent research direction: AI application, blockchain,

mobile and IoT.

Tên tác giả: Phạm Văn Hưởng

Cơ quan công tác: Học viện Kỹ thuật mật mã.

mailto:lthvan@actvn.edu.vn
mailto:lthvan@actvn.edu.vn
mailto:quangminhnguyen1025@gmail.com
mailto:quangminhnguyen1025@gmail.com
mailto:huongpv@actvn.edu.vn

Journal of Science and Technology on Information security

 No 1.CS (24) 2025 71

Email: huongpv@actvn.edu.vn

Quá trình đào tạo: Nhận bằng Cử nhân năm 2005, Thạc

sĩ năm 2008 và Tiến sĩ Kỹ thuật phần mềm năm 2015 tại

Đại học Công nghệ - Đại học Quốc gia Hà Nội.

Hướng nghiên cứu hiện nay: Trí tuệ nhân tạo ứng dụng,

blockchain, phần mềm di động và hệ thống nhúng.

Nguyen Hieu Minh

Workplace: Academy of

Cryptography Techniques, Vietnam

Email: hieuminh@actvn.edu.vn

Education: Received a Bachelor's

degree in Radio Electronics and

Telecommunications in 1993 and a

Master's degree in 1999 from the

Military Technical Academy (Vietnam). Earned a Ph.D. in

2005 from Saint Petersburg State Electrotechnical

University (LETI), Russian Federation. Conferred the title of

Professor in 2023.

Recent research direction: Electronics and

Telecommunications Engineering, Information

Technology, Cryptography, and Information Security.

Tên tác giả: Nguyễn Hiếu Minh

Cơ quan công tác: Học viện Kỹ thuật mật mã.

Email: hieuminh@actvn.edu.vn

Quá trình đào tạo: Nhận bằng đại học chuyên ngành Vô

tuyến điện tử/thông tin năm 1993, thạc sĩ năm 1999 tại

Học viện Kỹ thuật quân sự, bằng tiến sĩ tại ĐH Tổng hợp

kỹ thuật điện Xanh Pê téc bua – Liên bang Nga năm

2005, được phong hàm Giáo sư năm 2023.

Hướng nghiên cứu hiện nay: Kỹ thuật điện tử viễn thông,

Công nghệ thông tin, mật mã và an toàn thông tin.

mailto:huongpv@actvn.edu.vn
mailto:hieuminh@actvn.edu.vn
mailto:hieuminh@actvn.edu.vn

