Journal of Science and Technology on Information security

Malware Analysis: A Perspective from Dynamic
Symbolic Execution of Binary Code

DOI:https://doi.org/10.54654/isj.v2i25.1093

Abstract— Malware
involves three steps: obfuscation, infection, and
malicious action. Many antivirus methods fail
because obfuscation hides control structures.
This paper provides an overview of dynamic
symbolic execution (DSE) applied to binary code,
especially x86. DSE is considered the most
powerful technique for deobfuscation and can
automatically recover control structures such as
control-flow graphs. Several DSE tools target
x86 (e.g., angr, Mayhem, S2E, KLEE-MC,
and BE-PUM); we examine their design choices
and trade-offs. Finally, we evaluate the
effectiveness of control-flow graph similarity for
tasks such as packer identification and original
entry point (OEP) detection.

analysis typically

Tom tdt— Phan tich phan mém déc hai bao gom
ba bude: 1am réi, 1ay nhiém va cac hanh vi doc hai.
Nhiéu phuong phap chéng lai virus thit bai vi k§
thuét 1am réi che gidu cic cAu tric diéu khién. Bai
bao nay cung cip cai nhin tdng quan vé thuc thi biéu
tugng dong (DSE) dugc ap dung cho ma nhi phan,
dic biét voi kién tric x86. DSE dugc xem la ky thuét
manh mé nhét cho khit réi va cé thé tw déng khoi
phuc cac ciu triic diéu khién nhu dé thi ludng diéu
khién. Nhiéu cong cu DSE muc tiéu x86 (vi du nhu
angr, Mayhem, S2E, KLEE-MC va BE-PUM); ching
t6i xem xét cac lua chon thiét ké va nhitng danh ddi
ctia chiing. Cudi cing, chiing tdi danh gia hiéu qua
cua do tuong dﬁng do thi luéng diéu khién cho cic
tac vu nhu nhén dang trinh dong goi va phat hién
diém viao ban dau / nguyén thuy (OEP).

Keywords— Dynamic symbolic execution, binary code,
x86, control flow graph, obfuscation
Tir khéa— Thuc thi biéu tugng dong; ma nhi phin; x86;

do thi luong diéu khién; ky thudt lam réi.

This manuscript was received on March 11, 2025. It was reviewed
on April 18, 2025, revised on April 30, 2025 and accepted on July
14, 2025.

Mizuhito Ogawa

I. INTRODUCTION

A control-flow graph (CFG) is one of the key
features representing program behavior, as
it reflects the underlying semantics of a
program. For example, complementary to large
language model (LLM) approaches [50],
vulnerability detection in C/C++ programs often
utilizes CFGs as part of the feature set, as seen
in systems like VulDeePecker [47], Velvet
[55], and DeepVD [51]. CFGs for C/C++
programs can be easily extracted through
syntactic  parsing. However, extracting CFGs
from binary code is significantly = more
challenging. For instance, x86/Windows
malware can employ mutation techniques
[56] that alter the binary while preserving
both the PE format and program semantics.

CFG generation from binary code is
essentially equivalent to disassembly. Commercial
disassemblers such as IDA Pro and Capstone
perform syntactic analysis and work well on
non-packed binaries - though they may fail to
resolve indirect jump targets.

Magic word (ZM)

2 Entry point address
“—5a4d

0: addl $0x2a, %eax
: cmpl $0x0, %eax
006: jae 0x100f

a801f0ee . E
K Disassembly 0 : . Sebx
5477 20206572 I:> 100d:

2676d 206
07465

756 4fd44
€564

000175ddb1d7

, ‘Heax

0x1012: movl $0x3, %ebx

" Instructions 0x1017: addl %ebx, %eax
0x1019: ret

Figure 1. x86 binary and its disassembly

In contrast, packed binaries often use
obfuscation techniques that easily defeat such
syntactic disassembly. Alarmingly, more than
85% of modern malware is packed.

To address these challenges, Dynamic
Symbolic Execution (DSE) is widely regarded as
the most effective deobfuscation technique [57].
In addition to recovering control-flow structures,

No 2.CS (25)2025 5



Journal of Science and Technology on Information security

DSE can also detect dead code by determining
the infeasibility of execution paths. This
capability is particularly valuable, as dead code
can constitute up to 50% of the total code in
x86/Windows malware.

This paper surveys dynamic symbolic
execution (DSE) applied to binary code, with a
particular focus on the x86 architecture. We also
provide an overview of potential applications of
DSE tools in binary analysis. Concepts are
explained briefly and intuitively, with relevant
references provided to guide interested readers.

This tutorial 1is organized as follows.
Section II briefly mentions the obfuscation
techniques to bypass anti-virus software and the
infection techniques to attack vulnerability.
Section III explains what is a CFG of binary
code. Section IV reviews the existing DSE tools
on binary code, especially x86. Section V
discusses how DSE can traverse heterogeneous

environments, like Android/apk. Finally,
Section VI shows applications, e.g., packer
identification, OEP (Original Entry Point)

detection, and vulnerability detection.

II. MALWARE TECHNIQUES

Malware techniques consist of three steps:
obfuscation, infection, and malicious action. You
can refer the details of these techniques with
code samples to [1 - 4].

A. Obfuscation techniques and their observation

Obfuscation  techniques are  classified
in [11, 12]. Nowadays, most of them are
automatically introduced by packers. By adding
recent obfuscation techniques, e.g., vitualization,
we categorize them.

1) Entry/code placing obfuscation (Code
layout):
overlapping functions,
and code chunking.

2) Self-modification code (Dynamic code) :
overwriting, packing/unpacking and SEH
(structural exception handler)

3) Control flow obfuscation: Indirect jump and
opaque predicate

4) Arithmetic operation: Obfuscated constants
and checksumming.

5) Anti-debugging: Timing check, Special
API, Stolen bytes and Dynamic loading.

overlapping blocks,

6 No 2.CS (25) 2025

6) Anti-tampering:
anti-rewriting.
7) Virtualization: virtualization.

Hardware breakpoint and

Apart  from
behavior [14] is

obfuscation, trigger-based
another technique used to
evade dynamic analysis. Such triggers
activate malicious actions only under rare
environmental conditions (e.g., a specific
time, date, or IP address), so dynamic analysis
may fail to execute the malicious branches.
In DSE, symbolic execution can check the
satisfiability of these branches and generate
concrete inputs that trace them.

Code layout

IA-32 (x86) uses a variable-length instruction
set, so overlapping interpretations of a byte
sequence are possible. For example, the byte
sequences b8 eb 07 b9 eb and 0f 90 eb
can be decoded as mov eax, ebb907eb and
seto bl, respectively; the fragment eb 0f can
also be decoded as jmp 45402c. Such cases
produce  overlapping  instructions. =~ When
overlapping instructions span function boundaries
(resp. basic-block boundaries), we call them
overlapping functions (resp. overlapping blocks).

When code is split into fragments that are
connected only via jump instructions, we call this
code chunking. In our work, we use a heuristic
criterion: a region is considered chunked if there
are three jump instructions within a window of
20 bytes or less [41].

Self-modification code

Overwriting refers to rewriting portions of
the binary during execution. Packing/
unpacking is analogous to encryption/decryption:

a payload is stored in encrypted form and
dynamically decrypted by a runtime
loop, whereas overwriting implies direct

modification of code bytes. Packing is a major
technique for evading antivirus software. For
example, a polymorphic virus modifies its
encryption key during infection, producing
substantially  different binaries even when the
original payload is the same.

Control flow obfuscation

Indirect jumps conceal jump targets by
computing and storing them in memory or
registers at runtime, which hinders static
resolution of control flow. An opaque predicate
is a condition that is either always true or always



false; an opaque predicate in a conditional thus
forces execution to follow a fixed branch,
introducing dead code and confusing static
analyses. For instance, if 2 <0 .and 1if
x >2 then if z <1 . never choose the
then branch. It has been reported that opaque
predicates are responsible for a substantial
fraction of dead code in contemporary malware.

Structured exception handling (SEH) provides
user-level exception handlers and can be abused
to implement indirect control transfers, further
complicating control-flow recovery.

Arithmetic operation

Obfuscated constants hide argument values
by replacing them with equivalent arithmetic
expressions, e.g., (r + 4) — 4, or mixed
boolean-arithmetic (MBA) encodings, making it
difficult for static analyzers to recover the
original constants.

Checksumming

Checksumming (e.g., CRC checksums) is
used to detect whether a binary has been
modified, for example when software interrupts
are inserted for debugging. It is commonly
employed as an anti-tampering mechanism.

Anti-debugging

Timing checks detect anomalies in execution
time compared to a native Windows environment
(for example, unusually slow execution). APIs
such as QueryPerformanceCounter,
GetTickCount are often used for this purpose.
Special API checks, for example CALL
kernel32.IsDebuggerPresent in
kernel32.d1l1, probe whether the process is
being debugged. Hardware breakpoints use the
CPU debug registers (DR0O - DR3) rather than
general-purpose registers (e.g., FAX, EBX,
ECX) to monitor memory addresses; the INT3
instruction is a software breakpoint that triggers a
debug exception. The stolen-bytes technique
allocates a buffer (typically with
VirtualAlloc) and copies the unpacked code
there instead of overwriting the original code
region. Dynamic loading (e.g., via
LoadLibrary and GetProcAddress in
kernel32.d11) loads APIs dynamically and is
also commonly used to hinder static analysis.
There are many related techniques [2].

Journal of Science and Technology on Information security

Anti-tampering

In addition to hardware breakpoints and
INT3 instructions, anti-rewriting techniques
include stolen-bytes and checksumming to

prevent or detect modifications.
Virtualization

Virtualization-based packers implement a
custom virtual machine (VM) and translate
original instructions into VM bytecode. Examples
include VMprotect, CodeVirtualizer,
ExeCrypter, and Themida. Some tools (e.g.,
CodeVirtualizer) even polymorphically
modify their VM instruction sets. VMProtect is
a typical example of a packer that combines
virtualization with aggressive anti-debugging
(consisting of multiple protection stages).
Debugger plugins such as ScyllaHide (for
011lyDbg and x64dbg) have been developed to
defeat VMProtect’s anti-debugging measures;
tools like 64unpack can handle some versions,
e.g., VMProtect 3.4 [40].

B. Infection

Malware infection typically proceeds in three
main steps; see [2 — 4] for details.

o Overwrite/leak the jump (return) destination
by buffer overflow: Many attacks (over
90%in  some  studies)  begin
a buffer-overflow vulnerability, often
caused by unsafe memory operations
such as strcpy or misuse of printf
(omitting format specifiers in the first
argument). These vulnerabilities lead to
stack overflows (which commonly overwrite
return addresses to redirect control flow) or
heap overflows (which can corrupt heap
metadata, file names, or other data
structures).

o Set up malicious code: This can be done by
invoking library APIs (Return-to-libc style
attacks) or by injecting shellcode. In a
Return-to-libc attack, the attacker overwrites
a return address and arguments to jump to an
existing API function in a library. Shellcode
attacks place executable payloads in writable
regions such as the data section or the stack
(often as encoded strings) because many
OSes mark the code section as read-only.
Format-string vulnerabilities (e.g., careless
printf wusage that forgets the format
specification in the first argument) can be

with

No 2.CS (25)2025 7



Journal of Science and Technology on Information security

abused to write arbitrary values to memory.
Naive URL canonicalization that allows “..”
sequences (directory traversal) or more
sophisticated  encodings  (e.g., UTF-8
conversion) may be exploited; similarly,
MIME encoding can be abused to smuggle
payloads.

o Set up IAT to use APIs from shellcode:
Once control is transferred to shellcode, the
payload typically needs to call API functions.
To do this, shellcode locates the image base
of target DLLs (e.g., kernel32.dll,
advapi32.dll, ws2_32.dll, sometimes
gdi32.dll, user32.dll, ole32.dll), enumerates
export names, and computes relative virtual
addresses (RVAs) of required APIs.
Implementations often use heuristic (e.g.
assume that the offset would be a multiple of
1000) or iterative searches for these
addresses.

III. CONTROL FLOW GRAPH OF MALWARE
A. Definition of control flow graph

The standard definition of a control-flow
graph (CFG) is a directed, labeled graph in
which a node represents a program location, an
edge denotes a possible control transfer, and a
label associates a node (or edge) with an
expression. However, because binary code may
be self-modifying, we represent a node as a pair
consisting of a program location (address) and
the instruction at that location; different
instructions can be associated with the same
address after overwriting. For example, Figure 2
illustrates the difference between these two
representations when a jump destination is
overwritten. This design is also effective for
handling overlapping functions.

A basic block is defined as a maximal
contiguous sequence of instructions with a single
entry point and a single exit point - that is, it has
no multiple incoming or outgoing edges. For
example, the dynamic symbolic execution tool
ANGR [33] constructs a control-flow graph
(CFG) of binary code where each node represents
a basic block, and each basic block is labeled
with its corresponding instruction sequence.

B. Context sensitivity of CFG

CFGs were originally designed to represent
intra-procedural control flow only - calls and

8 No 2.CS (25) 2025

disassembly

oA 00401000 XOR EAX, EAX
33COEBODBB03104000 00401002: JMP SHORT 00401004
CBO00AEBF481FB0010 00401004: MOV EAX, 00401003
00007401C36A00E816 :> 00401009: MOV BYTE PTR DS:[EAX], 0A
000000052800000003C 0040100C JMP SHORT 00401002
SFFEQ40E801000000.... 00401002: JMP SHORT 0040100E

0040100E: CMP EBX,1000

@ 1002, “jmp 1004’
ﬁ> q004,“mov eax 1003’

009,“mov ds:[eax] 0A

!

1002, “jmp 100E”
JQO0E, “cmp ebx 1000’

100C, “jmp 1002"

§-E-2-e-0

Figure 2. CFG for binary code

returns are treated separately. When modeling
inter-procedural control flow, such as
function calls and returns, context sensitivity
becomes important. In a context-sensitive
setting, function returns must precisely return
to the instruction immediately following the
corresponding call site.

A call graph models relationships between
functions, where nodes represent functions and
edges represent calls from one function to
another. However, conventional call graphs
are context-insensitive, meaning that they do
not distinguish between different call sites calling
the same callee - returns may point to any of
the callers indiscriminately.

Accurate  context management requires
simulating a call stack that records return
addresses. However, standard CFGs are simply
directed graphs and lack such stack structures. A
common workaround is k-CFG [8], where callee
functions are cloned for each call context up to k
levels deep - this technique is known as context
cloning. Note that since function calls can nest to
arbitrary depth, unrestricted duplication may lead
to infinite expansion, and we limit as k-CFG.

While more precise, k-CFGs can be
computationally expensive; therefore, typical
values are k = 1 or k = 2 (with £ = 0 denoting
a context-insensitive CFG). For example,
BE-PUM (for x86/win) ! adopts a 0-CFG
approach, while HybridSE (for Android/apk on
ARM)? uses a 1-CFG model as a practical
choice between precision and complexity.

Thttps://github.com/NMHai/BE-PUM
Zhttps://github.com/hybridse/HybridSE



77 &

context context context
insensitive cloning stacking

L

execution

Figure 3. Context sensitivity of CFGs

C. Graph Kernel

The Weisfeiler-Lehman (WL) graph kernel
computes a canonical feature vector for labeled
graphs and is (almost) invariant under
label-preserving  isomorphisms [15, 16].
Intuitively, it extends the idea of m-grams from
sequences  to  graphs by  generalizing
subsequences of length n to radius n subgraphs
around each node. At each iteration of the WL
algorithm, a new label is assigned to each node
by hashing the multiset of labels in its
neighborhood, as illustrated in Figure 4.

Sequence: “ABACBAB”
1-gram: ) 2-gram:

A B A C B A B AB BA AC CB BA AB

(AB,C)=(3,3,1) (AA,AB,AC,BA,BB,BC,CA,CB,CC)
Graph _ =(0,2,1,1,0,0,0,1,0)
1-neibor: o \ 2-neibor: @
k=0 k=1 Converge to the limit,
( ) :> ¢ : :> no new labels introduced.
O
\ O
(22| a
Figure 4. Intuitive idea of Weisfeiler-Lehman
graph kernel

Repeating this process iteratively captures
increasingly rich local structures. However,
computing the WL kernel until convergence is
computationally intensive.

There are several variants of graph kernels
that serve as efficient approximations of graph
similarity, including the shortest path kernel,
random walk kernel, graphlet kernel, graph
hopper kernel, and hash graph kernel [17]. These
and other variations are implemented in the
GraKel library 3.

In addition, by combining graph kernel ideas
with neural embeddings, tools such as
graph2vec * have become popular for learning
vector representations of graphs and computing
graph similarity more effectively [18].

3https://ysig.github.io/GraKeL/
“https://github.com/benedekrozemberczki/graph2vec

Journal of Science and Technology on Information security

IV. DYNAMIC SYMBOLIC EXECUTION ON
BINARY CODE

A. Hoare logic

Hoare logic is built on an underlying logic
with the expression {A}Program{B} that
means if A holds then the execution of
Program concludes the postcondition ZB.
(Detailes are referred in [7].) In Java, this
speicication, described in Java Modeling
Language (JML), can be a part of a program
used in Design-by-contract and
Assume-Guarantee approaches.

To see the idea, we will set a simple imperative
program with while-loop. Its language constructs
are:

o Assignment: x = e

« Conditional: i f C' then S1 else S2
o Sequence: S1; 52

o While-loop: while C' do S

where e is an arithmetic expression (i.e., € = & |
O|1]e+e|exe, Cisa condition constructed
by predicates =, <, and S is a sequence.

Then, the deduction rules corresponding to

each construct are:
[Assignment:]{ Ale/z]} z = e {A}

[Conditional:]{ A} i f C then S1 else S2{B}{AAC}S1{B}and {AA-C} S2{B}

[Sequence:] { A} S1; S2{C}{A} S1{B} and {B} S2{C}
[While-loop:]{ R} while C do S{R AN -C}{RAC}S{R}

Here R is called a loop-invariant, which holds
before/after the execution of S. We have a
inference rule

[Consequence:|{A'} S{B'}A' > A, B> B’, {A} S{B}

Note that the inferences A’ D A, B D B’ are
not in Hoare logic, but in the underlying logic.
Note that finding a loop invariant is a search to
find R with A D R D B in While-loop
deduction rule. It is undecidable in general, but
good search strategies are known, e.g., Farkas’s
Lemma and Craig interpolant.

In the context of symbolic execution, the
choice of the wunderlying logic typically
corresponds to the background theories supported
by an SMT solver. For example, LIA (Linear
Integer Arithmetic), UF (Uninterpreted
Functions), BitVectors, and Arrays.

We call I of {A}Prefiz{l} a path
condition of Prefix. Assume that we deduce
{A} Program {B}. Then, if the program exit is
reachable from the entry, the assumption A will

No 2.CS (25) 2025 9



Journal of Science and Technology on Information security

lead the conclusion B. Therefore, verifying such
a program requires checking reachability, which
is equivalent to proving termination. In this
sense, program correctness is guaranteed only if
termination is also established, which is known
as partial correctness.

For extended programming features, such as
pointers, context sensitivity, or higher-order
functions, the limits of (relative) completeness of
symbolic execution are discussed in [9, 10].

B. Dynamic symbolic execution

Concrete execution interprets a program over
concrete (actual) values. In contrast, symbolic
execution interprets a program over symbolic
domains, where the program state is represented
by symbolic formulae [19]. Starting from the
entry point, symbolic execution updates the path
condition at each step according to deduction
rules, accumulating constraints that describe all
feasible execution paths.

Figure 5 illustrates an example of symbolic
execution on a small Java program. Initially,
symbolic values «, 3, are assigned to the input
variables a,b,c, respectively. When the path
condition at a particular program location is
satisfiable, a concrete input that satisfies it can
drive execution to that location. Conversely, if the
path condition is unsatisfiable, the location is
unreachable, i.e., it is considered dead code.

public boolean foo(int a, int b, int c) }
int x = 5;

Figure 5. Example of symbolic execution
on small java program

Symbolic ~ execution is a  classical
technique [19], and practical implementations for
programming languages have been evolving since
the 1990s. Popular tools include Klee [22] for C
programs, and SPF (Symbolic Path Finder) [23]
and JDart [24] for Java bytecode.

These tools go beyond basic symbolic
execution by supporting Dynamic Symbolic
Execution (DSE) - also known as concolic
testing. DSE combines traditional testing

10 No 2.CS (25) 2025

(concrete execution) with symbolic execution.
Originally, DSE was proposed to improve
efficiency by replacing parts of symbolic
reasoning with concrete execution.

In malware analysis, this hybrid approach is
especially useful for resolving indirect jump
destinations, which are difficult to determine
statically. While programming languages often
make potential targets explicit through syntax, in
obfuscated malware the jump targets are typically
computed dynamically. Static analysis alone
struggles to recover these due to obfuscations
such as arithmetic manipulations.

Tools like McVeto [25] wuse weighted
pushdown model checking to enumerate
candidate jump targets. While effective on
unpacked binaries, such methods often fail under
real-world obfuscations. In contrast, DSE resolves
jump targets by generating satisfying inputs for
the path condition at the jump site and executing
the binary with those inputs.

Static Dynamic y  SAT &test

Y & next#d, ég

SAT &test  y & nexttd, & nexttd,
UNSAT

D) y & next=d, SAT
Y &next=d, SAT

Statically detected (¢
UNSAT

candidates ¥ & next=d

Figure 6. Finding indirect jump destinations by DSE

C. DSE on binary code

Popular DSE tools for x86 binary code
include ANGR [33], Mayhem [29], S2E [28],
Klee—MC [30], BE-PUM [31],
BINSEC/SE [32]. Among them, ANGR is
perhaps the most widely used, and supports
multiple architectures beyond x86.

Many of these tools are built on intermediate
machine languages (IMLs), which abstract away
hardware-specific instruction sets. For instance:

e ANGR uses VEX,

e« Mayhem uses BAP [26],

e Klee—-MC uses LLVM, and
e BINSEC/SE uses DBA [27].

In contrast, BE-PUM directly interprets x86
binaries and performs DSE without translating to
an IML. Each approach has its advantages and
trade-offs:

o IML-based designs enable DSE to be applied
across multiple architectures (e.g., x86,
ARM, MIPS) by first translating the binary



to a common intermediate form. On the
other hand, direct interpretation requires a
dedicated implementation for each
architecture (e.g., BE-PUM [31] for x86,
Corana [34] for ARM, and SyMIPS [35] for
MIPS). To reduce manual engineering effort,
some tools use (semi-)automated extraction
of formal semantics from instruction set
architecture (ISA) manuals (e.g., x86 [45],
ARM [34], MIPS [35].

o If IML translators are treated as black-box
components, they inherit the limitations of
static ~ disassemblers, especially in the
presence of obfuscation. For example, ANGR,
Mayhem, Klee-MC rely on off-the-shelf
IML translators. In contrast, BINSEC/SE
integrates its IML (DBA) translator tightly
with the symbolic execution engine. This
step-by-step interaction enables BINSEC/SE
to track dynamic changes more effectively,
and to overcome limitations that purely static
translators face under obfuscation.

An example architecture of a DSE tool is
illustated in Figure 7. The example is BE-PUM.

Java API
Stub of AP >
(output)
System C;
c

Return
(post-condition)

ility Check
SMT: Z3 4.3

Instr(Env,m) Fe
Jakstab 0.8.3

Figure 7. Architecture of DSE tool BE-PUM

V. DSE OVER HETEROGENEOUS
ENVIRONMENTS

When applying DSE to x86 binary code, we
frequently encounter Windows API calls or Linux
library functions, which are essentially procedural
calls to blackbox components. For such blackbox
callees, the common approach is to instantiate
the function arguments using satisfiable instances
of the current path condition, and then perform
concrete execution of the function.

In contrast, when analyzing an Android APK
file, the execution spans multiple environments.

Journal of Science and Technology on Information security

An APK file is a packaged archive that can be
decomposed using tools like apktool®, which
extracts components such as
AndroidManifest.xml, .dex files, .so
files (native code), and other resources. The
.dex files contain Dalvik bytecode, a variant of
Java bytecode, which can be converted into
standard Java bytecode using dex2jar. The
native code within the APK may be compiled for
x86, ARM, or MIPS, though ARM is the most
common target.

As a result, DSE on Android typically starts
from the Java layer but may involve transitions to
native code or Linux system calls. System
functions are treated as blackboxes, while native
code is typically analyzable. There are two
strategies for handling native code during DSE:

o Blackbox treatment: Handle native code via
concrete execution (i.e., do not symbolically
analyze it).

o Whitebox treatment: Continue symbolic
execution into the native code using a
separate  DSE tool designed for that
architecture.

An example of the blackbox approach is
jpf-nhandler [21], a plubin of SPF [23],
which delegates native calls to concrete
execution. Examples of the whitebox approach
include ANGR [33] and HybridSES. The former
typically translates binary code (of X86, ARM,
MIPS) into VEX IML; however, ANGR on
Android/apk translates both Java bytecode and
ARM native code into a unified intermediate
representation, Jimple’. The latter connects SPF
(for Java) with Corana/API [36] (for ARM
native code), passing execution contexts between
them while respecting the calling conventions.

A. Control passed to blackbox

When control is passed to a blackbox
function (e.g., a native or system call), there are
two common handling strategies in DSE:

¢ Over-approximation: Return new symbolic
values as the result of the call.

o Under-approximation: Execute the call using a
satisfiable concrete input.

We refer to the second strategy as concretization.

Shttps://apktool.org/
Shttps://github.com/hybridse/HybridSE
"https://soot-oss.github.io/SootUp/v1.1.2/jimple/

No 2.CS (25) 2025 11



Journal of Science and Technology on Information security

Over-approximation is useful for detecting
trigger-based behavior [14], such as time bombs
(e.g., April Fool’s Day logic) or sophisticated
malware like STUXNET. However, excessive use
of this approach can lead to state explosion,
making DSE computationally intractable.

Concretization, on the other hand, reduces
symbolic execution to concrete execution at the
blackbox boundary. It is particularly effective for
analyzing system calls that search for dynamic
resources such as files, IP addresses, or open
ports. Two implementations of concretization are
commonly found in practice:

o Full Concretization of Execution Tools like
jpf-nhandler (an SPF plugin) apply full
concretization by  maintaining parallel
symbolic and concrete executions. When a
blackbox call is encountered, the current
concrete state of DSE is transferred to the
base execution platform and executed
concretely.  Afterward, the result is
propagated back into the symbolic
environment.

e Minimal Concretization of Arguments Tools

such as BE-PUM (for x86) and HybridSE
(for Android/apk on ARM) adopt a minimal
concretization strategy, where only the
function arguments of the blackbox call are
instantiated with satisfiable concrete values.
The rest of the symbolic execution context
(e.g., symbolic memory, other variables)
remains untouched.
Upon return from the concrete call, the
symbolic environment is updated only with
the returned value, while the path condition
remains unchanged, i.e., the pre- and
post-conditions of the call are assumed to be
identical. This design minimizes the impact
on the symbolic state, as illustrated in
Figure 8.

Precondition a Postcondition a
Caller cm+1. Copy env mem‘
DSE 2. Concretize
sym values Copy env
Blackbox ~ execute -
Callee -

Figure 8. Partial concretization at blackbox call

12 No 2.CS (25) 2025

( ;
Whitebox native code

Callee Precondition Postcondition
DSE 2

B. Control passed to whitebox

When handling whitebox calls, there are two

primary approaches:

o Convert the Entire Program into a Single

Context The standard implementation,
ANGR, uniformly converts input programs
into its intermediate representation (IML),
VEX. Different from the standard traslation
of ANGE, ANGR converts both Java bytecode
and ARM native code in an Android/APK
into Jimple, a common Java IR. However,
this unified conversion introduces new
challenges, especially semantic mismatches:
Jimple preserves Java’s object-oriented
structure, including class hierarchies. Native
code, in contrast, lacks this structure and
operates under different memory and
execution models. This mismatch makes
semantic translation non-trivial and can
affect the accuracy of symbolic execution.
Combine DSE Tools for Individual Platforms
HybridSE takes a different approach by
combining two distinct DSE engines: SPF
for Java and Corana/APTI for ARM native.
At function call and return boundaries,
environment transfer is performed according
to the calling conventions. This includes: (1)
Copying argument values, (2) Mapping
memory regions, and (3) Maintaining
consistent execution state. Fig. 9 llustrates
the control flow between two DSE tools
during whitebox call transitions.

Precondition a Postcondition
o =AYy

Caller Il. Copy env | ®
DSE 1 2. Fresh Copy return env

sym values (concrete & sym) )
=

-

\ v=true Y y

Figure 9. Traverse two DSE tools at whitebox call

Type-Sensitive Environment Transfer

Transferring the environment across different

execution platforms requires careful handling of
data types:

« For primitive types, copying the value into a

register or pushing it onto the stack is
sufficient (depending on the calling
convention).



o For pointers or fields, memory tracing is
required, since the referenced memory may
represent: single value (e.g., int*), fixed-size
buffer, and dynamically sized array
terminated by a sentinel. Figure 10 illustrates
the complexity of handling different
pointer-based data structures across symbolic
execution boundaries.

Intermediate
Store

Platform 1
Environment

Platform 2
Environment

i A

g
: (8}~ € g (e - ¢
i Pass pointer D D D

i+ argument

Figure 10. Passing environments between
two different DSEs

Handling Windows API Calls

Windows APIs are vast, with thousands of
documented functions. Although only around
1,000 are frequently used in practice, manually
checking argument types from documentation
remains a significant engineering effort.

To mitigate this:

« Naming conventions of arguments are used as
weak type hints.

o Lightweight machine learning techniques are
applied to infer pointer types and argument
semantics.

With these methods, 60—70% of pointer-type
arguments can be automatically inferred from OS
manuals (for x86/Windows [44]) and Library code
(for Android/apk [36]).

VI. APPLICATIONS OF CFG SIMILARITY

We now explore applications of CFG
similarity, primarily using the Weisfeiler-Lehman
graph kernel as the base method. In practice, we
employ grah2vec [18], a neural embedding
approach for graph similarity.

Most modern malware is packed using a
variety of packers. Thus, a typical malware
sample can be considered as a pair of the
original payload and the packer used. To classify
malware meaningfully, we must:

o Extract and compare CFGs of the original
payloads, not directly the packed binaries.

o Accurately locate the Original Entry Point
(OEP) of execution.

Journal of Science and Technology on Information security

Figure 11 illustrates the working of a packer
and its unpacking stub. For more technical details
about packers, see references [11-13]. (General)
unpacking refers to the process of locating the OEP
and recovering the original binary payload.

Unpacking stub

Unpacking stub
Allocate new area

)

—=="__Tail jump to OEP

X\,‘

decrypt ﬂ \
I o I
\ 3 /

Payload Pa yload_tece\’/éry

encrypt

pack _— I execute
Payload Payload

© Packed binary
(on disk)

0 Original binary

(on disk) S lrod tix Access & write

(in memory)

d
Entry
point
Bootstrap
H{ Header | code
Entry
poin Bootstrap. Unpacked
code OFP 1 dat
I

Packed
code + data

Unpacked
code

3
H
3
b P ————
8 1
=~ “
« F
8% |23 (|82 |8
*

Figure 11. Packing and the unpacking stub by a packer

The packer typically (1) Encrypts the
payload, (2) Adds an unpacking stub, and (3)
Transfers control to the OEP after decryption.
Applications introduced here are:

o Packer identification [41, 42]
¢ OEP (Original Entry Point) detection [42]
o Vulnerability detection [46]

A. Packer identification

As shown in [41], each packer introduces a
characteristic sequence of obfuscation techniques
within its unpacking stub.

In the experiment, four toy assembly
programs (without loops or obfuscations) were
packed using 12 different packers, including:
ASPACK v2, CEXE vl1.0Ob, FSG v2.0,
KKRUNCHY v0.23a4, MPRESS v2.19, NPACK
v1.0, PECOMPACT v2.0x, PETITE v2.1,
TELOCK v0.99, UPX v3.0, YODA’s Crypter
v1l.3, and UPACK v0.37-0.39. The DSE tool
BE-PUM was applied to extract the CFGs of the
unpacking stubs.

Based on CFG classification introduced in
Section I, each packer showed a distinct structural

No 2.CS (25) 2025 13



Journal of Science and Technology on Information security

TABLE 1. LIST OF OBFUSCATION TECHNIQUES

0 overlapping function || 1 overlapping block 2 code chunking

3 overwriting 4 | packing/unpacking 5 indirect jump

6 SEH 7 2API 8 obfuscated constant
9 check 1 11 | anti-debugging

1 1

0 | timing check
3 | hardware break point

)

stolen bytes

8333373351234512344844448884444444448888488484434

ASPack v2.12

CEXE 54454444468446844485574444444833433

FSGv2.0 3353543535343512

15884445446455445574844A44424844A4444444444844

KKRUNCHY

MPRESS' | i i i i aaaaa —oomEommmmmmemema R

312571244123433483 1
633313512333444584351251244334444444444833531253545

nPack v1.0

PECompact 2.0x

PEtitev2.1

RO o e e e e SRS SRR s
44484531253
2234385336813883333373333333333535453335234453334

UPX v3.94

yoda's Crypter 1.3

UPACKVO.37  |44438453683435353535343435:¢

Figure 12. Obfuscation technique sequences for the
observed packers

pattern. The results are summarized in Table I.

The detected obfuscation technique sequences
are uniform for each packer. The results are
summerized in Figure 12.

In [41], instead of using the exact sequence of
obfuscation techniques as a signature, a frequency
vector representing the number of occurrences of
each technique was used. This vector is referred to
as a metadata signature.

This method was applied to a large dataset of
12,814 real-world malware samples, including
5,374 samples from VX Heaven and 7,440
samples from VirusShare. Using the DSE tool
BE-PUM, CFGs were successfully generated for
12,315 of these samples.

The identified packers were then compared

with the results from widely wused site
VirusTotal® and tools CFFexplorerg,
PEiD!,

Among the four tools (including BE-PUM),
the inconsistency is on 933 samples:

o 325 samples were reported as "unknown" only
by BE-PUM, likely due to the use of other
existing packers not included among the 12
packers above.

e 206 samples were classified as "packed" by
BE-PUM, but reported as "unpacked" by
VirusTotal, CFF Explorer, and PEiD, likely
due to the use of custom-made packers.

8https://www.virustotal.com/
“https://ntcore.com/explorer-suite/
1Ohttps://github.com/wolfram77web/app-peid

14 No 2.CS (25) 2025

o 402 samples were inconsistent among the
tools.

After manual analysis, BE-PUM (and PEiD) were
found to be incorrect in only one case, where
MEW was mistakenly identified as FSG [41].

In a follow-up study [42], instead of using
metadata signatures, CFG similarity was used to
identify the packer, along with OEP (Original
Entry Point) detection. This approach is based on
the observation that the unpacking stub - and
thus the characteristics of the packer - can be
identified near the OEP.

B. OEP detection

Most traditional methods for OEP detection
rely on heuristics to hook the end of the
unpacking stub [37-40]. For example, when
decrypting an encrypted payload, an unpacking
stub may:

o Allocate a new buffer in memory,

o Write the decrypted payload into that buffer,
and

o Use a jump or return instruction to transfer
control to the OEP.

Heuristics are based on detecting patterns in
memory allocation, memory access, stack usage,
and jumps. However, such heuristics are often
packer-specific, limiting their generality.

Instead, [42] investigates a more robust and
general approach to OEP detection using CFG
similarity. The core idea is,

e When the packer is identified by the
similarity of the unpacking stubs, the packed
code execution is around OEP.

« Look for the code sequence that has the same
tail-jump sequence around there.

assuming that the unpacking stub produced by a
packer is uniform, regardless of the original
payload.

For supporting the idea, we first apply a
known packer (even as a black box) to various
known binaries to collect (1) CFGs of unpacking
stubs and (2) Tail-jump sequences (typically 5
instructions at the end of the stub).

Figure 13 shows the CFGs of unpacking
stubs for UPX, FSG, and MEW. On the left, two
binaries packed with UPX show that the CFGs of
the unpacking stubs have nearly identical shapes,
despite differences in the original payloads. On



MEW

Unpacking e 6
stub (UPX E |

Unpacking
DAG

Autologon.——

exe
AccessEnum
exe

DbgView
exe
Cacheset
exe

AccessEnum Du
.exe .exe

Figure 13. CFGs of unpacking stubs: UPX, FSG,
and MEW

the right, the unpacking stubs of UPX, FSG, and
MEW are shown for comparison.

The tail-jump sequence is also characteristic
for each packer. For example, UPX commonly
uses the following instruction sequence pushl
cmpl jne subl Jjmp.

From these observations,

proceeds:

the procedure

o When a CFG of an unpacking stub matches
a known stub, the corresponding packer is
identified.

o The method then searches for a matching tail-
jump sequence near the end of the stub.

o If such a match is found, the jump target is
assumed to be the OEP.

This technique offers a systematic and
generalizable  approach to  both  packer
identification and OEP detection, even in the
absence of traditional heuristics.

In [42], packer identification and OEP
(Original Entry Point) detection were evaluated
on a dataset consisting of:

e 771 samples collected
repositories''?, and

e 1,259 malware samples from VXHeaven (a
subset of the dataset used in [41]).

from GitHub

Among the former, 71 samples (covering 12
packers used in [41]) were used as femplates
representing the control flow graphs (CFGs) of

https://github.com/chesvectain/PackingData
2https://github.com/packing-box/dataset-packed-pe

Journal of Science and Technology on Information security

the unpacking stubs. First, BE-PUM was used to
generate CFGs from the dataset. Then, graph
similarity was computed using graph2vec,
which provides an approximation of the
Weisfeiler-Lehman graph kernel. The results were
compared against the following tools, (1)
VirusTotal, (2) PyPackerDetect!?, (3)
Metadata signature [41] (a
frequency-based method) (4) Gunpacker
v0.5", and (5) QuickUnpack v2.2!5. The
first three are for packer identification and the
latter two are for OEP detection. Table II) shows
the result, in which the column CFG presents our
method.

Two failure cases were observed:

o WinUpack: WinUpack has
unpacking stub templates (see Fig. 14).
However, [42] used only one template
(WINPACK1), likely due to the limited size
of the training set.

e Packman: In one failed sample, the
unpacking stub was executed twice, which
was not accounted for in the detection logic.

two different

Despite these failures, our CFG similarity
approach for unpacking stub identification
performed well, although it assumes access to the
packer to prepare templates.

VII. FUTURE APPLICATIONS OF CFG
SIMILARITY: VULNERABILITY DETECTION

Detecting vulnerabilities in C/C++ programs
has become a highly active area of research using
machine learning (ML) and deep learning (DL).
While these methods often apply learning on
graph structures, the graphs are not always CFGs.
Common graph-based representations include:

e Code Property Graph: Combines syntax,
control flow, and data dependency [43].

o Call dataflow slice: Used in
VulDeePecker [47]

o Def-Use chain: GraphCodeBERT [48]

¢ Code as Sequence 4 n-gram Co-occurrence:
ReGVD [49]

« n-hop neiborhood graphs (control / data flow):
LineVD [50]

o Combining Structural Graphs: DeepVD [51]
combines control flow, data flow, exception

Bttps://gitub.com/cylance/PyPackerDetect

Yhttps://webscene.it/tools/show/GUnPacker-v0.5
Shttps://www.aldeid.com/wiki/QuickUnpack

No 2.CS (25) 2025 15



Journal of Science and Technology on Information security

TABLE II. COMPARISON WITH EXISTING TOOLS

Packer Samples Packer Identification OEP detection
1| @ |3 | CFG | @) | (5 | CFG

UPX v3.95 85 85 30 84 85 78 85 85

ASPACK v2.12 68 68 68 68 68 56 68 68

FSG v1.0 75 75 75 75 75 70 75 75

PECOMPACT v2.xx 27 27 27 27 27 0 8 27

MEW SE v1.2 75 75 75 75 75 74 8 75

YODA'’s Cryptor v1.3 74 74 | 74 | 62 74 73 8 74

PETITE v2.1 34 34 34 34 34 0 8 34

WINUPACK v.039 final 26 26 26 26 15 26 4 15

MPRESS v2.xx 78 78 0 78 78 0 8 78

PACKMAN v1.0 79 79 79 0 79 79 8 78

JDPACK v1.01 52 51 0 0 52 45 2 52

TELOCK v0.98 27 27 27 27 27 24 1 27

Total 700 699 | 515 | 556 | 689 | 525 | 283 | 688
flow, and call graphs. 6 properties, e.g., inside a virtualized environment using
control flow, dataflow, exception flow, and anti-VM techniques. These exploit
call graph. implementation-specific behaviors that are
o Code Transformation Graphs: CodeJIT [52] difficult to cover fully. This is a
focus on function-level cat-and-mouse game: as one method is

These techniques
vulnerability  detection. More fine-grained
techniques, like line-level localization, aim to
identify vulnerabilities within a small number of

code lines (e.g., 10 lines). Such examples
include:
e IVDetect [53]: Applies GCNN on

neighborhood graphs.

o Velvet [55]: Uses GCNN on Code Property
Graphs.

o LineVul [54]: Uses 2-gram statements with
self-attension.

Obtaining CFGs from C/C++ programs is
generally straightforward. However, when we
consider the vulnerability detection on binary
code, e.g., x86, we face the problem how to
obtain CFGs of binary code. If not packed
compiled code (like most of victim code), often
popular disassemblers work. However, malware
often contains heavy obfuscation, making CFG
extraction difficult. In such cases, Dynamic
Symbolic Execution (DSE) is considered one of
the most powerful deobfuscation tools available.

VIII. LIMITATIONS OF DSE

Although DSE is considered a powerful
deobfuscation method, it has several significant
limitations [59].

e VM awareness / Anti-VM Techniques:
Malware often detects whether it is running

16 No 2.CS (25) 2025

mitigated, new detection techniques emerge.

BE-PUM, like most DSE tools, fails to
execute binaries packed with VMProtect,
whereas ScyllaHide bypasses
anti-debugging in VMProtect 3.0 and
x64unpack circumvents VMProtect
3.4 [40].

Path explosion: Originally, DSE (also known
as concolic testing [20]) was intended to
improve efficiency by combining symbolic
and concrete execution. However, in malware
analysis, the purpose shifts: instead of
efficiency, it is used to resolve indirect
jumps. When an indirect jump is
encountered, DSE generates a satisfiable
input that reaches the jump. It executes the
jump concretely and finds the indirect jump
destination. Repeating this process, DSE can
identify possible jump targets.

However, if obfuscation adds excessive
conditional branches, DSE can become
computationally infeasible due to path

explosion [60, 61].

Difficult or unsolvable symbolic expression:
DSE relies on SMT solvers to evaluate path
conditions. These solvers support backend
theories like Arithmetic (linear/nonlinear),
Uninterpreted functions, Bit-vectors, and
Arrays. Problems arise when the symbolic
expression is too complex or unsolvable, or



data structures (like arrays, lists, and structs)
require modeling all elements symbolically.
Approximations are often required in such
cases [958, 59, 62].

o Virtualization and ROP: In virtualized
obfuscation, the malware uses a custom
instruction set, and understanding the control
flow requires interpreting these instructions.
Return-Oriented Programming (ROP) further
complicates analysis by replacing jump
instructions with sequences of push and
return instructions. Several solutions were
proposed like trace normalization via DSE

and dynamic analysis and CFG
reconstruction. They adapt Equational
rewriting [63], Rule-based
simplification [64, 66, 68], ML-based

synthesis [67], and Time-stamped execution
traces [65]. Even with virtualization, the
malware ultimately executes on the original
instruction set, although the control structure
is modified. Another approach is to abstract
the CFG, ignoring small variations but
preserving the high-level structure. These
abstracted CFGs can then be used in
statistical or ML-based analysis.

IX. CONCLUSION

This paper reviewed:

e The fundamentals and tools of Dynamic
Symbolic Execution (DSE) on binary code.

o Applications such as malware unpacking,
CFG similarity, and vulnerability detection.

o Limitations of DSE in real-world scenarios.

While DSE is a powerful tool, it is
computationally expensive and not suitable for
real-time detection. However, it remains crucial
for deep understanding of malware, particularly
in revealing Semantics, Unpacking behavior, and
Code-level attack techniques. Current applications
focus on generating control flow graphs (CFGs).
The next frontier lies in classifying malware and
understanding its techniques, especially those
targeting known vulnerabilities.

X. ACKNOWLEDGEMENT

The author thanks to Prof. Jean-Yves Marion
(University of Lorraine) and Dr. Nguyen Van
Anh  (Yokohama National University) for
continuous collaboration. This research was

Journal of Science and Technology on Information security

supported by JSPS KAKENHI Grant Number
20K20625.

WINUPACK 1 WINUPACK 2

ADExpni'orer Hash
.exe .exe

ADInsi;aht V\";hois
.exe .exe

Figure 14. Two types of CFGs of unpacking stub of
WINUPACK

No 2.CS (25)2025 17



Journal of Science and Technology on Information security

REFERENCES

[1] M.Sikorski, A.Honig: Practical Malware
Analysis, No Stretch Book, 2012.

[2] D.Andriesse, Practical Binary Analysis, No
Stretch Book, 2018.

[3] P.Szor: The Art of Computer Virus Research
and Defense, Addison Wesley, 2005

[4] C.Anley, J.Heasman, F.Lindner, G.Richarte:
The Shellcoder’s Handbook (2nd ed),
Addison Wesley, 2007

[5] C.Collberg, J.Nagra: Surreptitious software.
Addison Wesley 2010

[6] NulL Team: Handbook of CTFer, Springer,
2022.

[7] G.Winskel: The Formal Semantics of
Programming Languages, MIT Press, 1993.

[8] F.Nielson, H.R.Nielson, C.Hankin: Principles
of Program Analysis, Springer, 1999

[9] E.Clarke: Programming language constructs
for which it is impossible to obtain good
Hoare axiom systems, JACM 26(1), 1979.

[10] E.Clarke, S.M.German, J.Y.Halpern:
Effective axiomatizations of Hoare logics,
JACM 30(3), 1983.

[11] K.A.Roundy, B.P.Miller: Binary-code
obfuscations in prevalent packer tools. ACM
Comput. Surv 46 4:1-4:32, 2013

[12] S.Schrittwieser: Protecting Software through
Obfuscation: Can It Keep Pace with Progress
in Code Analysis? ACM Comp Surv 49(1),
2016.

[13] B.Cheng, J.Ming, E.A.Leal, H.Zhang, J.Fu,
G.Peng, J.-Y.Marion: Obfuscation-Resilient
Exectuable Payload Extraction From Packed
Malware, USENIX, 3456, 2021.

[14] C. Hartwig, Z. Liang,
J. Newsome, D. X. Song, H. Yin:
Automatically  identifying  trigger-based
behavior in malware, Botnet Detection ADIS

36, 2008.

D. Brumley,

18 No 2.CS (25) 2025

[15] B.Weisfeiler, A.A.Lehman: A reduction of a
graph to a canonical form and an algebra
arising during this reduction. Nauchno-
Technicheskaya Informatsia 2(9), 1968.

[16] N.Shervashidze, P.Schweitzer, E.J.van
Leeuwen, K.Mehlhorn, K.M.Borgwardt:
Weisfeiler-Lehman Graph Kernels. Journal

of Machine Learning Research 12, 2011.

[17] N.M.Kriege, F.D.Johansson, C.Morris: A
survey on graph kernels, Applied Network

Science 5:6, 2020.

M.Chandramohan,
R.Venkatesan, L.Chen, Y.Liu,
S.Jaiswal: Graph2vec: Learning
Distributed Representations of  Graphs,
https://arxiv.org/pdf/1707.05005, 2017.

[18] A.Narayanan,

[19] J.C.King: Symbolic execution and program

testing, Commun. ACM, 19(7), 1976.

[20] P.Godefroid, N.Klarlund, K.Sen: DART:
directed automated random testing, PLDI,
2005.

[21] N. Shafiei, F. van Breugel: Automatic

handling of native methods in java pathfinder,

SPIN, 2014

[22] C. Cadar, D. Dunbar, and D. Engler:
Klee: Unassisted and automatic generation
of high-coverage tests for complex systems

programs,” OSDI, 2008.

[23] C. Pasareanu, W. Visser, D. Bushnell,
J. Geldenhuys, P. Mehlitz, N. Rungta:
Symbolic pathfinder: Integrating symbolic
execution with model checking for java

bytecode analysis, ASE, 2013

[24] M.Mues, F.Howar: JDart: Dynamic Symbolic
Execution for Java Bytecode, TACAS, LNCS
12079, 2020

[25] A.V.Thakur, JLim, A.Lal, A.Burton,
E.Driscoll, M.Elder, T.Andersen, T.Reps:
Directed Proof Generation for Machine
Code, CAV, LNCS 6174, 2010

[26] D.Brumley, [.Jager, T.Avgerinos,
E.J.Schwart: BAP: A Binary Analysis

Platform, CAV, LNCS 6806, 2011



[27] A.Djoudi, S.Bardin: BINSEC: Binary Code
Analysis with Low Level Regions, TACAS,
Springer LNCS 9035, 2015

[28] V. Chipounov, V. Kuznetsov, G. Candea: S2E:
A platform for in-vivo multi-path analysis of
software systems, SIGARCH Comput. Archit.
News 1, 2011

[29] S. K. Cha, T. Avgerinos, A. Rebert,

D. Brumley: Unleashing Mayhem on binary

code, SP, 2012

[30] A. Romano: Methods for binary symbolic

execution, PhD Dissertation, Stanford
University, 2014.
[31] M.H.Nguyen, M.Ogawa, Q.T.Tho:

Obfuscation code localization based on
CFG generation of malware, FPS, LNCS
9482, 2015.

[32] R. David, S. Bardin, T. D. Ta, L. Mounier,
J. Feist, M. Potet, J. Marion: BINSEC/SE:
A dynamic symbolic execution toolkit for
binary-level analysis, SANER, 2016.

[33] Y.Shoshitaishvili, R.Wang, C.Salls,
N.Stephens, M.Polino, A.Dutcher, J.Grosen,
S.Feng, C.Hauser, C.Kruegel, G.Vigna:
(State of) The Art of War: Offensive
Techniques in Binary Analysis, SP, 2016.

[34] A. Vu, M. Ogawa: Formal semantics
extraction from natural language

specifications for ARM, FM, LNCS 11800,
2019.

[35] Q.T.Trac, M.Ogawa: Formal Semantics
Extraction from MIPS Instruction Manual,
FTSCS, Springer CCIS 1165, 2019.

[36] A. T. V. Nguyen, M. Ogawa: Automatic stub
generation for dynamic symbolic execution of
arm binary, SolCT, 2022.

[37] P.Royal, M.Halpin, D.Dagon, R.Edmonds,
W.Lee: Automating the Hidden-Code

Extraction of Unpack-Executing Malware,
ACSAC, 2006.

[38] L.Martignoni,  M.Christodorescu,  S.Jha:
OmniUnpack: Fast, Generic, and Safe
Unpacking of Malware ACSAC, 2007.

Journal of Science and Technology on Information security

[39] B.Cheng, J.Ming, J.Fu, G.Peng, T.Chen,
X.Zhang, J.-Y.Marion: Towards Paving the
Way for Large-Scale Windows Malware
Analysis: Generic Binary Unpacking with
Orders-of-Magnitude Performance Boost,
CCS, 2018.

[40] S.Choi, T.Changi, C.Kim, Y.Park:
x64Unpack: Hybrid Emulation Unpacker for
64-bit Windows Environments and Detailed
Analysis Results on VMProtect 3.4, IEEE

Access. 2020.

[41] N. M. Hai, M. Ogawa, Q. T. Tho: Packer
Identification Based on Metadata Signature,
ACM SSPREW-7, 2017.

[42] P T.Hung, M.Ogawa: Original Entry Point
detection based on graph similarity. FPS,
LNCS 14551, 2023.

[43] F.Yamaguchi, N.Golde, D.Arp, K.Rieck:
Modeling and Discovering Vulnerabilities
with Code Property Graphs, SP 2014.

[44] Le Vinh: Automatic stub generation from
natural language description, Master thesis,
JAIST, 2016 September.

[45] H.L.Y.Nguyen: Automatic extraction of x86
formal semantics from its natural language
description, Master thesis, JAIST, 2018
March.

[46] Nguyen The Hung: Vulnerabilities detection
in binary code, Master thesis, JAIST, 2024
September.

[47] Z.Liy, D.Zouz, S.Xux, X.Ou, H.Jin, S.Wang,
Z.Deng, Y.Zhong: VulDeePecker: A Deep
Learning-Based System for Vulnerability
Detection, NDSS 2018.

[48] D.Guo, S.Ren, S.Lu, Z.Feng, D.Tang, S.Liu,
L.Zhou, et.al. GraphCodeBERT: Pre-training

code representations with data flow, ICLR,
2021.

[49] V.A.Nguyen, D.Q.Nguyen, V.Nguyen, T.Le,
Q.H.Tran, D.Phung: ReGVD: Revisiting
Graph Neural Networks for Vulnerability
Detection, ICSE-Companion, 2022.

[50] D.Hin, A.Kan, H.Chen, M.A.Babar: LineVD:
Statement-level Vulnerability Detection using
Graph Neural Networks, MSR, 2022.

No 2.CS (25) 2025 19



Journal of Science and Technology on Information security

[51] W.Wang, T.N.Nguyen, S.Wang, Y.Lij,
J.Zhang, A.Yadavally: DeepVD: Toward
Class-Separation ~ Features  for  Neural
Network Vulnerability Detection, ICSE,
2023.

[52] S.Nguyen, T.-T.Nguyen, T.T.Vu, T.-D.Do,

K.-T.Ngo, H.D.Vo: Code-centric Learning-

based Just-In-Time Vulnerability Detection,

archive, 2023.

[53] Y.Li, S.Wang, T.N.Nguyen: Vulnerability

Detection with Fine-Grained Interpretations,

FSE, 2021.

[54] LineVul: A

vulnerability

M.Fu, C.Tantithamthavorn:
transformer-based line-level
prediction, MSR, 2022.

[55] Y.Ding, S.Suneja, Y.Zheng, J.Laredo,
A Morari, G.Kaiser, B.Ray: Velvet: a novel
ensemble learning approach to automatically
locate vulnerable statements, SANAR, 2022.
[56] Pham Van Hau, To Trong Nghia, Phan
The Duy, A method of generating
mutated Windows malware to evade
ensemble learning, Journal of Science
and Technology on Information Security,
vol 1, no 18, 2023, pp 47-60. DOI:
https://doi.org/10.54654/isj.v1118.906.

[57] S.Bardin, R.David; J.-Y.Marion: Backward-
Bounded DSE: Targeting Infeasibility
Questions on Obfuscated Codes, SP, 2017.

[58] Z.Wang, JMing, C.Jia, D.Gao: Linear
obfuscation to combat symbolic execution,
ESORICS, LNCS 6879, 2011.

[59] B.Yadegari, S.Debray: Symbolic Execution
of Obfuscated Code, CCS, 2015.

[60] S.Banescu, C.Collberg, V.Ganesh,
Z.Newsham, A .Pretschner: Code Obfuscation
Against Symbolic Execution Attacks, ACSAC,
2016.

[61] M.Ollivier, S.Bardin, R.Bonichon, J.-
Y.Marion: How to Kill Symbolic
Deobfuscation for Free (or Unleashing

the Potential of Path-Oriented Protections),
ACSAC, 2019.

20 No 2.CS (25) 2025

[62] M.I.Sharif, A.Lanzi, J.T.Gin, W.Lee:
Impeding malware analysis using conditional
code obfuscation. NDSS, 2008.

[63] M.Sharif, A.Lanzi, J.Giffin, W.Lee:
Automatic Reverse Engineering of Malware

Emulators, SP, 2009.

[64] B.Yadegari, B.Johannesmeyer, B.Whitely,
S.Debray: A generic approach to automatic

deobfuscation of executable code, SP, 2015.

[65] H.Li, Y.Zhan, W.Jiangiang, D.Gu: SymSem:
Symbolic Execution with Time Stamps for
Deobfuscation, INSCRYPT, LNCS 12020,

2019.

[66] M.Liangl, Z.Lil, Q.Zeng, Z.Fang:
Deobfuscation of Virtualization-Obfuscated
Code Through Symbolic Execution and

Compilation Optimization, ICICS, 2017.

[67] T.Blazytko, M.Contag, C.Aschermann,
T.Holz: Syntia: Synthesizing the Semantics

of Obfuscated Code, USENIX, 2017.

[68] J.Salwanl, S.Bardin, M.-L.Potet: Symbolic
deobfuscation: from virtualized code back to
the original? (long version), DIMVA, LNCS

10885, 2018.

ABOUT THE AUTHORS

Mizuhito Ogawa
Workplace:

Old Teachers Network, Japan
Email: mizuhito@ gmail.com

Education: Doctor
of Science, University of Tokyo
Recent research interests: Formal

methods, especially on binary code,
e.g., x86, ARM and RISC-V. He also interested in pure

theoretical research, such as combinatorics, formal
languages and computation theory, especially on the
decidability.

Tén tac gia: Mizihito Ogawa

Co quan cong tac: Mang Iudi Cyu Giang vién Dai hoc Nhat Ban
Email: mizuhito@gmail.com

Qua trinh dao tao: Tién si Khoa hoc tai Dai hoc Tokyo, Nhat Ban
Hudng nghién ciru hién nay: Cac phuong phap hinh thirc, dac
biét trén ma nhi phan, chéng han nhu x86, ARM va RISC-V.
Ong ciing quan tdm dén cac nghién ciru 1y thuyét thuin tay,
nhu to hop, ngdn ngit hinh thirc va Iy thuyét tinh toan, dic
biét 1 vé tinh quyét dinh.





