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Abstract— In the realm of internet security, 

ensuring the robustness and integrity of 

communication protocols is paramount. This 

paper offers a comprehensive analysis of four 

leading tools for security protocol verification: 

Scyther, ProVerif, CryptoVerif, and Tamarin. 

Each tool is evaluated for its unique strengths and 

applications, particularly in the contexts of cloud 

computing and IoT. The study begins with 

Scyther, highlighting its proficiency in automated 

falsification and multi-protocol verification. Next, 

ProVerif is examined for its capabilities in 

symbolic reasoning and its efficiency in handling 

complex security protocols. The paper then 

explores CryptoVerif’s computational approach 

to protocol verification, focusing on how it models 

and verifies protocols under a variety of 

cryptographic assumptions. Finally, Tamarin’s 

advanced features in symbolic analysis and its 

ability to manage intricate security properties are 

discussed, emphasizing its depth in formal 

protocol verification. This comparative analysis 

not only underscores the distinct contributions of 

each tool but also provides a broader perspective 

on their effectiveness in addressing both current 

and emerging security challenges. By dissecting 

the methodologies and limitations of these tools, 

the paper aims to offer valuable insights into the 

evolving landscape of security protocol 

verification and potential future directions in this 

critical area of cybersecurity research.  

Tóm tắt— Trong lĩnh vực bảo mật Internet, 

đảm bảo tính vững chắc và toàn vẹn của các giao 

thức truyền thông là điều tối quan trọng. Bài báo 

này cung cấp một phân tích toàn diện về bốn công 

cụ hàng đầu để xác minh giao thức bảo mật: 

Scyther, ProVerif, CryptoVerif và Tamarin. Mỗi 

công cụ được đánh giá về những điểm mạnh và 

ứng dụng độc đáo của nó, đặc biệt trong bối cảnh 

điện toán đám mây và IoT. Nghiên cứu bắt đầu với 

Scyther, nhấn mạnh khả năng làm giả tự động và 

xác minh đa giao thức của nó. Tiếp theo, ProVerif 

được xem xét về khả năng lập luận biểu tượng và 

hiệu quả trong việc xử lý các giao thức bảo mật 

phức tạp. Bài báo sau đó khám phá cách tiếp cận 

tính toán của CryptoVerif đối với việc xác minh 

giao thức, tập trung vào cách nó mô hình hóa và 

xác minh các giao thức dưới nhiều giả định mật 

mã khác nhau. Cuối cùng, các tính năng nâng cao 

của Tamarin trong phân tích biểu tượng và khả 

năng quản lý các thuộc tính bảo mật phức tạp 

được thảo luận, nhấn mạnh độ sâu của nó trong 

xác minh giao thức chính thức. Phân tích so sánh 

này không chỉ nhấn mạnh những đóng góp riêng 

biệt của mỗi công cụ mà còn cung cấp một góc nhìn 

rộng hơn về hiệu quả của chúng trong việc giải 

quyết cả những thách thức bảo mật hiện tại và mới 

nổi. Bằng cách phân tích các phương pháp và hạn 

chế của các công cụ này, bài báo nhằm cung cấp 

những hiểu biết có giá trị về bối cảnh đang phát 

triển của việc xác minh giao thức bảo mật và các 

hướng đi tiềm năng trong tương lai trong lĩnh vực 

nghiên cứu an ninh mạng quan trọng này. 
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Từ khóa— Giao thức xác minh, giao thức làm giả, giao 

thức phân tích, bảo mật, mật mã học. 

I. INTRODUCTION

In the realm of digital security, security 

protocols, particularly key agreement protocols, 

are fundamental to ensuring secure 

communications over potentially insecure 

networks [1, 2]. These protocols enable the 

establishment of shared secret keys, which are 

crucial for safeguarding subsequent exchanges 

of data. Given the critical role these protocols 

play, verifying their robustness is essential to 

prevent vulnerabilities such as man-in-the-

middle, replay attacks, and side-channel 
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exploits. Recent studies have explored the 

analysis and verification of hierarchical 

identity-based authenticated key agreement 

(HIB-AKA) protocols, employing advanced 

tools like Scyther and Tamarin for a thorough 

evaluation [3]. Research has also investigated 

identity-based authenticated key agreement 

protocols within the Diffie-Hellman family, 

enabled by Weil or Tate pairings, to address 

intricate issues related to cryptographic security 

[4]. Moreover, the rise of quantum computing 

has led to a focus on lightweight lattice-based 

secure systems, especially those that offer 

efficient security in the post-quantum era [5]. 

Scyther is one of the leading tools in security 

protocol verification, recognized for its intuitive 

interface and capacity to automate the 

falsification of security protocols. Its ability to 

handle an unbounded number of protocol 

sessions makes it highly effective for analyzing 

key agreement protocols across various 

contexts, including cloud computing and IoT 

environments [6 - 8]. Similarly, Tamarin is 

widely regarded for its robust symbolic analysis 

capabilities, enabling it to handle complex 

security properties and a wide range of 

adversary models [9 - 11]. This tool represents 

a significant advancement in security protocol 

verification by formalizing and verifying 

protocols in large-scale, real-world scenarios 

[12]. Verification tools can be widely applied in 

various domains. For example, Pham et al. [13]  

demonstrated a robust approach for web attack 

detection using deep learning and natural 

language processing techniques. While their 

work focuses on attack detection, integrating 

verification tools like Scyther or Tamarin could 

further formalize the system's security 

properties, ensuring robustness against evolving 

threats .A notable development has been the 

integration of finite-state machine (FSM) model 

learning with Tamarin, which facilitates the 

detection of logical errors, thereby improving 

protocol verification processes. ProVerif also 

plays a pivotal role in the formal verification of 

security protocols, leveraging symbolic 

reasoning to verify properties such as secrecy 

and authentication. Using Horn clauses and a 

resolution algorithm, ProVerif is adept at 

analyzing various cryptographic protocols, 

including MQV-based key exchange protocols 

and identity-based schemes [14 - 16]. 

Moreover, ProVerif has been extended to verify 

protocols with stateful and algebraic properties, 

expanding its application to more complex 

scenarios [17, 18]. Operating in the 

computational model, CryptoVerif provides 

stronger security guarantees than symbolic 

models by verifying security properties such as 

secrecy, indistinguishability, and authentication 

under concrete cryptographic assumptions [19]. 

CryptoVerif is particularly suited for verifying 

modern protocols like TLS 1.3 and Signal, 

offering computational proofs that these 

protocols are robust against sophisticated 

attacks [20, 21]. It has also been employed to 

verify dynamic key compromise scenarios, 

demonstrating its utility in evaluating key 

exchange protocols under evolving threats, such 

as in TLS 1.3 and the WireGuard VPN protocol 

[22, 23]. Additionally, the introduction of 

CV2EC, a translation tool bridging CryptoVerif 

and EasyCrypt, has further expanded 

CryptoVerif’s capabilities by allowing for the 

verification of cryptographic primitives 

alongside protocol verification, as demonstrated 

in various case studies [24]. Beyond protocol 

verification, Tamarin has proven invaluable in 

large-scale applications such as multi-party 

cryptographic systems and dynamic 

environments like 5G networks. Its ability to 

formalize advanced adversary models and 

verify stateful protocols has made it an essential 

tool for evaluating complex security properties 

under dynamic threats. Together, these tools, 

Scyther, ProVerif, CryptoVerif, and Tamarin, 

provide a comprehensive suite for security 

protocol verification, each contributing distinct 

methodologies that address the evolving 

challenges in securing communication 

protocols across a wide range of applications. 

This paper is organized into five sections, 

each providing an in-depth exploration of key 

aspects related to security protocol verification 

tools. Section 2 introduces the primary tools 

under consideration, including Scyther, 

ProVerif, CryptoVerif, and Tamarin, and 

highlights their relevance in today's security 
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landscape. Section III focuses on a comparative 

analysis of these tools, examining their features, 

strengths, and limitations across various 

parameters. Section IV presents a discussion of 

the tools and case study, analyzing how they 

adapt to technological shifts, evolve with 

cryptographic advancements, enhance user 

experience, and address emerging security 

challenges. Finally, Section V concludes the 

paper by summarizing the main findings and 

outlining the broader implications for future 

research and tool development in security 

protocol verification. 

 II. THEORETICAL COMPARISON OF SECURITY 

PROTOCOL VERIFICATION TOOLS 

In this section, the paper turns the attention 

to the foundational aspects of our study. Previous 

work [25] provided only a basic and a simple 

comparison of two methods, without addressing 

their relevance and importance in the current 

context. This paper overcome these limitations 

by offering a more comprehensive and timely 

analysis .The session is organized into four 

subsections, each dedicated to a significant tool 

in the field of security protocol verification: 

Scyther, ProVerif, CryptoVerif, and Tamarin. 

The first subsection focuses on Scyther, a key 

tool for verifying and analyzing security 

protocols. We will explore its methodology, 

distinctive features, and its wide-ranging 

applications in both industrial and academic 

contexts. Additionally, we will assess its 

strengths and limitations to provide a 

comprehensive understanding of its impact in 

security protocol analysis. The following 

subsection will delve into ProVerif, examining 

its unique symbolic reasoning approach, 

capabilities, and diverse use cases in 

cryptographic protocol verification. This 

analysis will highlight how ProVerif advances 

the field by efficiently verifying key security 

properties such as secrecy and authentication. 

Next, we will explore CryptoVerif, focusing on 

its role in computational verification and how it 

models cryptographic assumptions to provide 

stronger security guarantees. Finally, we will 

present a detailed comparison of these tools, 

outlining their respective advantages and 

drawbacks, offering a holistic view of their 

contributions to security protocol verification. 

A. The Scyther Tool 

Detailed Analysis of Scyther's Methodology and 

Features 

Scyther represents a major advancement in 

the analysis of security protocols. Designed with 

a focus on usability and efficiency, this tool uses 

a distinctive methodology that distinguishes it 

from other verification systems. At its core is a 

pattern refinement algorithm, which enables a 

concise representation of potentially infinite sets 

of execution traces. This algorithm plays a key 

role in examining classes of attacks, potential 

protocol behaviors, and validating the 

correctness of security protocols across an 

unlimited number of sessions. 

Scyther operates on the well-established 

Dolev-Yao intruder model, a commonly used 

approach in the analysis of security protocols. 

This model assumes that an attacker has full 

control over the network but cannot break 

cryptographic primitives. Leveraging this model, 

Scyther simulates possible attacks and uncovers 

vulnerabilities in protocols under review. A 

standout feature of the tool is its capacity to 

handle unbounded verification with guaranteed 

termination, allowing it to provide definitive 

conclusions regarding the security of the 

analyzed protocols.  

Case Studies and Applications in Various Contexts 

Scyther has demonstrated its versatility and 

effectiveness across a wide range of applications, 

both in academic and industrial settings. It has 

been employed to analyze and verify the security 

of various protocols. In the industrial domain, 

Scyther has been pivotal in the verification of 

complex security protocols, such as IKE 

(versions 1 and 2) and ISO/IEC 9798, providing 

critical insights into their security properties. 

Additionally, its application in academic 

environments has been valuable for teaching 

purposes, allowing students to explore the 

nuances of protocol analysis. Scyther’s user-

friendly interface, coupled with its graphical 

depiction of protocol interactions, makes it a 

useful educational tool, helping students and 



Journal of Science and Technology on Information security 

 

    No 2.CS (22) 2024   65 

researchers grasp the intricacies of security 

protocols more effectively. 

Strengths and Limitations 

 One of Scyther’s key strengths lies in its ease 

of use, which lowers the barrier for those new to 

the field of security protocol analysis. Its 

automated analysis capabilities allow for quick 

and efficient verification, saving both time and 

resources. Furthermore, Scyther's ability to 

perform unbounded verification and deliver 

conclusive results adds to its reliability and 

effectiveness, making it a valuable tool for 

security professionals and researchers alike. 

However, while it excels in analyzing certain 

security properties, such as authentication and 

secrecy, it may struggle with more complex 

properties like non-repudiation or handling 

certain denial-of-service (DoS) attacks. 

Moreover, its reliance on the Dolev-Yao model 

although advantageous in many scenarios can 

limit its applicability in real-world cases that 

involve physical attacks or side-channel attacks, 

as these aspects are not accounted for in the 

model. 

Overall, Scyther is a powerful, user-friendly 

tool that significantly contributes to the field of 

security protocol analysis. Its methodology, 

applications, strengths, and limitations make it 

an essential resource for researchers, educators, 

and security professionals (Figure 1). The tool 

provides an automated, comprehensive approach 

to protocol verification, enhancing the 

understanding and fortification of security 

protocols across various digital communication 

environments. Like any tool, however, its 

effectiveness is optimized when users are aware 

of its scope and limitations, ensuring that it is 

applied appropriately within the context of 

broader security analysis strategies. 

 

Figure 1. Overall key aspects of Scyther 

Language 

 The Scyther tool uses a specialized language 

for specifying security protocols, known as the 

Scyther Specification Language (SSL). This 

language is designed to be simple yet expressive 

enough to define various aspects of security 

protocols, including roles, messages, and 

cryptographic operations. 

Key Features of SSL: 

1. Role-Based Specification: Protocols are 

defined in terms of roles (like initiator, 

responder) and their interactions. 

2. Message Format: Messages are defined 

using a straightforward syntax that describes the 

composition of messages sent and received. 

3. Cryptographic Constructs: Common 

cryptographic operations like encryption, 

decryption, and hashing are supported. 

4. Variables and Constants: The language 

allows the use of variables (for dynamic values like 

nonces) and constants (for static values like keys). 

To be clearer, considering an example is of 

the Needham-Schroeder Public Key Protocol 

using the Scyther SSL. This protocol is 

designed for establishing a secure 

communication channel between two parties, 

identified as I (Initiator) and R (Responder), by 

exchanging nonces (random numbers) to verify 

each other's identity and establish shared 

secrets. Let's break down the example: 

Protocol Definition: 

Protocol ns3(I, R) {...}: Defines a new 

protocol named ns3 with two roles, I (Initiator) 

and R (Responder). 

Role I (Initiator): 

1. fresh ni: Nonce; Initiator generates a fresh 

nonce ni. 

2. var nr: Nonce; Declares a variable nr to 

store the nonce received from the Responder. 

3. send_1(I, R, {ni, I}pk(R) ); Initiator sends 

a message to Responder, containing the nonce ni 
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and its identity I, encrypted with Responder's 

public key pk(R). 

4. recv_2(R, I, {ni, nr}pk(I) ); Initiator 

receives a message from Responder, containing 

the original nonce ni and Responder's nonce nr, 

encrypted with Initiator's public key pk(I). 

5. send_3(I, R, {nr}pk(R) ); Initiator sends 

back the nonce nr received from Responder, 

encrypted with Responder's public key pk(R). 

The Initiator then makes several claims about 

the protocol's security properties, such as secrecy 

of nonces, aliveness, agreement, commitment, 

and synchronization. 

Role R (Responder): 

1. var ni: Nonce; Responder declares a variable 

ni to store the nonce received from the 

Initiator. 

2. fresh nr: Nonce; Responder generates a fresh 

nonce nr. 

3. recv_1(I, R, {ni, I}pk(R) ); Responder 

receives the first message from Initiator, 

decrypts it to get Initiator's nonce ni and 

identity I. 

4. send_2(R, I, {ni, nr}pk(I) ); Responder sends 

a message back to Initiator, containing the 

received nonce ni and its own nonce nr, 

encrypted with Initiator's public key pk(I). 

5. recv_3(I, R, {nr}pk(R) ); Responder receives 

the final message from Initiator, containing 

the nonce nr. 

The Responder also makes similar claims 

about the protocol's security properties. 

Security Claims: 

• claim(...); These statements are used to 

assert various security properties like secrecy 

(nonces are not known to others), aliveness 

(other party is active), agreement (both parties 

agree on the nonces), commitment (a party is 

committed to a session), and synchronization 

(nonces are synchronized between parties). 

This protocol aims to securely establish a 

shared secret between the Initiator and 

Responder, ensuring that both parties are who 

they claim to be. The claims are used to verify 

the security properties of the protocol using the 

Scyther tool. The result is presented in Figure 2 

that shows the number of attacks can affect the 

protocol. 

 

Figure 2. Scyther language and Input/Output 

Furthermore, Scyther can trace attacks by 

presenting graphs, as demonstrated in Figure 3. 

 

Figure  3. Attack claims in Scyther 

B. Proverif 

Detailed Analysis of ProVerif's Methodology and 

Features 

ProVerif is a powerful tool widely used for 

the symbolic verification of security protocols. 

Unlike Scyther, which primarily handles 

unbounded verification of protocol sessions, 

ProVerif excels at verifying security properties 

such as secrecy, authentication, and integrity 
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using symbolic reasoning. It is based on an 

abstraction known as Horn clauses, and it uses a 

resolution algorithm to automatically analyze 

cryptographic protocols. ProVerif operates in the 

Dolev-Yao model, where the adversary has 

complete control over the network but cannot 

break cryptographic primitives. One of 

ProVerif’s key features is its ability to handle 

infinite state spaces, meaning it can analyze 

protocols with an unbounded number of sessions 

or messages without explicitly enumerating all 

possible states. This capability makes it highly 

efficient for analyzing security properties in 

complex protocols. Additionally, ProVerif can 

verify a range of cryptographic operations, such 

as encryption, digital signatures, and Diffie-

Hellman key exchanges, making it versatile for 

various protocol types. 

ProVerif uses a query-based approach, where 

users pose specific security questions (queries) 

about the protocol, and ProVerif determines 

whether those properties hold or if there are 

attacks that violate them. For example, a typical 

query might ask if a shared secret remains 

confidential during communication. ProVerif’s 

internal algorithms attempt to prove or refute 

such queries, providing a detailed analysis of 

potential vulnerabilities. 

Case Studies and Applications in Various Contexts 

ProVerif has been applied in numerous real-

world contexts, underscoring its practical utility. 

It has been particularly effective in the 

verification of cryptographic protocols such as 

MQV-based key exchange protocols, where it 

can detect subtle attacks like the Unknown Key 

Share (UKS) attack. Moreover, ProVerif has 

been used to verify stateful protocols, where the 

state of a system changes over time, such as in 

TLS (Transport Layer Security) and Single Sign-

On (SSO) authentication systems. In industry, 

ProVerif has been instrumental in analyzing the 

security of software-defined networking (SDN) 

protocols, where its ability to handle both 

symbolic and algebraic properties is critical. 

Academic research also widely employs 

ProVerif to model complex systems, from cloud 

authentication mechanisms to IoT 

communication protocols. In these contexts, 

ProVerif provides crucial insights into protocol 

weaknesses, helping to ensure that they meet the 

desired security standards. 

Strengths and Limitations 

One of ProVerif’s major strengths is its 

automation and ability to handle infinite state 

spaces, making it extremely efficient for 

protocols that involve an unbounded number of 

participants or messages (Figure 04). Its query-

based approach also allows for flexible and 

specific analysis, meaning users can tailor their 

security questions based on the requirements of 

the protocol they are investigating. Additionally, 

ProVerif's support for various cryptographic 

primitives, including symmetric encryption, 

public-key encryption, and hash functions, 

makes it applicable to a wide variety of modern 

protocols. However, ProVerif is not without 

limitations. It operates under the symbolic 

Dolev-Yao model, which abstracts cryptographic 

primitives, potentially oversimplifying certain 

real-world behaviors of cryptographic systems. 

As a result, it might miss attacks that exploit the 

actual implementation of cryptographic 

algorithms. Furthermore, while ProVerif excels 

in analyzing secrecy and authentication, it may 

struggle with other properties like non-

repudiation or attacks that rely on side-channel 

information, as these are not fully modeled in the 

symbolic approach. Additionally, ProVerif's 

learning curve can be steep for beginners due to 

the need for users to understand both formal 

methods and protocol-specific features. 

 

Figure 4. Overall key aspects of ProVerif 

 Language 

The ProVerif language, used to model 

security protocols, is designed to be flexible and 

expressive. Protocols are represented using a 

process calculus, where communication is 

modeled using channels and cryptographic 
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operations like encryption and decryption are 

built-in functions. ProVerif provides users with 

the ability to specify protocol actions, such as 

sending or receiving messages, generating fresh 

keys, or performing cryptographic operations, all 

within the formal framework of the process 

calculus. Figure 05 demonstrates the Needham-

Schroeder Public Key Protocol implement in 

Proverif and its output. 

 

 

 
 

Figure 5. The Needham-Schroeder Public Key 

Protocol implement in Proverif and its output. 

This language supports the specification of 

security queries, allowing users to express 

properties such as confidentiality, authentication, 

and integrity. ProVerif’s language also supports 

equivalences, allowing users to check if two 

different executions of a protocol are 

indistinguishable to an adversary, which is useful 

for analyzing anonymity or privacy properties. 

Despite its power, the language can be complex 

to master, requiring users to familiarize 

themselves with process calculi and formal 

security properties. 

C. CryptoVerif  

Detailed Analysis of CryptoVerif's Methodology 

and Features 

CryptoVerif is a computational protocol 

verifier designed to provide cryptographic 

security proofs under real-world cryptographic 

assumptions. Unlike symbolic verification tools 

like ProVerif, which abstract cryptographic 

primitives using the Dolev-Yao model, 

CryptoVerif operates within the computational 

model, offering stronger and more realistic 

security guarantees. It aims to prove that 

protocols are secure against probabilistic 

polynomial-time (PPT) adversaries, which aligns 

more closely with how cryptography is 

implemented in practice. CryptoVerif’s 

methodology is based on game-based 

cryptographic proofs, a common approach used 

in modern cryptography. The tool models 

protocols as probabilistic processes, defining a 

sequence of games (cryptographic reductions) 

where each game is progressively transformed to 

get closer to a proof of the desired security 

property. This approach is particularly suited for 

proving secrecy, indistinguishability, and 

authentication properties under computational 

assumptions such as the hardness of discrete 

logarithm or Diffie-Hellman problems. One of 

the key features of CryptoVerif is its ability to 

generate proofs that protocols are secure in the 

presence of active adversaries, who can observe, 

intercept, and modify communications. 

CryptoVerif constructs formal proofs by 

showing that the success probability of any 

adversary is negligible. The tool also supports 

various cryptographic primitives, including 

symmetric encryption, public-key encryption, 

message authentication codes, digital signatures, 

and key exchange mechanisms, making it highly 

versatile. Unlike symbolic tools, CryptoVerif 

does not attempt to generate counterexamples or 

attacks. Instead, it focuses on proving the 

absence of vulnerabilities by analyzing protocol 

behavior under standard computational 

assumptions (Figure 6). 

Case Studies and Applications in Various Contexts 

CryptoVerif has been applied to several 

high-profile cryptographic protocols, providing 

formal proofs of security for some of the most 

widely used systems. One prominent case study 

involves the verification of the TLS 1.3 protocol, 

a critical protocol for secure internet 

communication. By analyzing TLS 1.3, 

CryptoVerif has been able to demonstrate its 
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resistance to various attacks, ensuring that it 

meets strict security standards under 

computational assumptions. Additionally, 

CryptoVerif has been employed in verifying the 

security of the Signal protocol, a popular end-to-

end encryption protocol used in secure 

messaging applications. This analysis has helped 

validate Signal’s claims regarding secrecy and 

authentication. Another notable application of 

CryptoVerif is in the evaluation of VPN 

protocols, such as WireGuard. In this context, the 

tool has been used to confirm that WireGuard's 

cryptographic components (e.g., its key 

exchange and encryption mechanisms) are 

secure under the computational model. These 

real-world case studies highlight CryptoVerif's 

utility in validating the security properties of 

widely deployed protocols in modern 

communication systems. CryptoVerif is also 

applicable in post-quantum cryptography, a 

rapidly growing area of research in response to 

the potential threats posed by quantum 

computing. By verifying lattice-based and other 

post-quantum cryptographic schemes, 

CryptoVerif contributes to ensuring that future 

cryptographic systems remain secure even in a 

post-quantum world. 

 

Figure 6. Overall key aspects of CryptoVerif 

Strengths and Limitations 

CryptoVerif’s primary strength lies in its 

ability to generate computational security proofs. 

Because it operates in the computational model, 

its results are more aligned with practical 

cryptography and real-world implementations. 

This makes CryptoVerif especially valuable 

when analyzing protocols that require strong 

security guarantees, such as those used in 

banking systems, secure messaging, or national 

security applications. Furthermore, CryptoVerif 

supports a wide range of cryptographic 

primitives and can handle complex protocol 

behaviors. The tool’s game-based approach 

allows for detailed cryptographic reductions, 

enabling researchers to develop strong security 

proofs. However, CryptoVerif also has some 

limitations. Its reliance on the computational 

model means that it often requires more detailed 

protocol specifications compared to symbolic 

tools like ProVerif. This makes CryptoVerif less 

automated, requiring substantial expertise in 

cryptographic concepts to accurately model 

protocols and interpret results. Additionally, 

generating computational proofs is 

computationally intensive, so the tool may 

require significant resources and time to analyze 

complex protocols. Another limitation is that 

CryptoVerif does not produce attack 

counterexamples like symbolic tools. Instead, it 

provides proofs of security or reports that the 

security proof could not be completed. This 

means it is primarily used for verifying protocols 

that are believed to be secure, rather than 

identifying vulnerabilities in protocols. 

Language 

The CryptoVerif language is designed for 

specifying cryptographic protocols at a detailed 

level. It is more expressive and complex than the 

symbolic languages used by tools like ProVerif 

because it must account for probabilistic 

processes and computational assumptions. The 

language allows users to specify the actions and 

cryptographic operations of the protocol, as well 

as the adversary's capabilities. In CryptoVerif, 

users can define secrecy properties, 

authentication goals, and indistinguishability 

properties using cryptographic reductions. These 

are the types of security properties that are 

proven or disproven based on the probabilistic 

behavior of the protocol under analysis. While 

the language is powerful, it is also challenging to 

learn and requires a solid understanding of both 

cryptography and formal verification techniques. 

Figure 7 presents an example of language use in 

CryptoVerif. Moreover, the language is closely 

tied to the game-based proof methodology. Users 

must define cryptographic games that represent 

the protocol’s behavior in the presence of 

adversaries. CryptoVerif then applies reductions 

to simplify these games, ultimately proving the 



Journal of Science and Technology on Information security 

 

70   No 3.CS (23) 2024     

security properties or showing that they hold a 

negligible advantage for the adversary. 

 

Figure 7. Language in CrytoVerif 

D. The Tamarin Prover 

Capabilities and Design 

The Tamarin Prover is a highly advanced 

tool for the verification of security protocols, 

offering both falsification and unbounded 

verification within the symbolic model. It utilizes 

multiset rewriting systems to specify protocols, 

which define a labeled transition system. This 

system's state includes a symbolic representation 

of the adversary’s knowledge, network 

messages, freshly generated values, and the 

protocol's internal state. Tamarin also supports 

the equational specification of cryptographic 

operators, such as Diffie-Hellman 

exponentiation and bilinear pairings, making it 

well-suited to model complex cryptographic 

scenarios [10]. 

Case Studies and Applications 

Tamarin’s flexibility and power are evident 

through its applications across a broad range of use 

cases. It has been successfully employed to model 

and analyze web applications, with its repository 

featuring numerous examples from academic 

papers, serving as a rich resource for modeling 

other protocols. Its ability to conduct symbolic 

analysis of security protocols further highlights its 

practical value in real-world settings. 

Strengths and Limitations 

Tamarin shines when it comes to handling 

protocols that involve non-monotonic mutable 

global state and intricate control flows, such as 

loops. The prover supports a form of induction and 

efficiently parallelizes proof searches, making it an 

effective tool for complex protocol analysis. 

However, its reliance on the symbolic model 

means it is limited to capturing attacks that fit 

within the model and the defined equational theory. 

Moreover, due to the undecidable nature of the 

underlying verification problems, Tamarin does 

not guarantee termination during verification. 

Notable Applications and Use Cases 

Tamarin has played a crucial role in 

identifying new vulnerabilities, significantly 

influencing the security of several real-world 

systems. Its formal verification of 5G protocols 

and symbolic analysis of web single-sign-on 

(SSO) protocols are key examples of its impact 

on critical, modern technologies. Several 

academic papers and surveys have explored 

Tamarin’s capabilities and contributions. For 

example, one study [12] provides a detailed 

overview of Tamarin, highlighting the key 

findings and achievements made using the tool, 

while another paper [10] delves deeper into its 

design and broad range of applications. 

In summary, the Tamarin Prover is a robust 

and flexible tool in the realm of security protocol 

verification. Its sophisticated capabilities and 

wide range of applications, from web protocols 

to 5G technologies, underscore its significant 

role in securing digital communication. While 

Tamarin's strengths in managing complex 

protocols and cryptographic operators are clear, 

it is important to recognize its limitations within 

the symbolic model and its potential for non-

termination. The extensive body of research and 

case studies surrounding Tamarin not only 

emphasizes its importance but also provides a 

valuable resource for ongoing exploration and 

development in security protocol analysis. The 

following diagram (Figure 8) summarizes the 

key aspects of the Tamarin Prover. 

 

 

Figure 8. Overall key aspects of Tamarin 

Language  

The Tamarin Prover uses a specialized 

language based on multiset rewriting rules for 
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specifying and analyzing security protocols. 

This language is designed to express the 

behavior of protocols in terms of actions (like 

sending and receiving messages) and states. It 

is quite expressive and allows for the 

specification of complex properties and 

behaviors of security protocols. 

Key Features of Tamarin's Language: 

1. Multiset Rewriting Rules: These rules 

define how the state of the protocol evolves with 

each action. 

2. State Representation: The state includes 

the knowledge of the adversary, the messages on 

the network, and the internal state of the protocol 

participants. 

3. Fact-Based Syntax: The language uses 

facts to represent the state of the system and the 

actions taken by the protocol participants. 

4. Support for Cryptographic Primitives: 

Tamarin can model various cryptographic 

operations and equational theories. 

Let's consider a simple example of a protocol 

with two roles: an initiator and a responder. The 

protocol involves the initiator sending a nonce to 

the responder, who then responds with the nonce 

encrypted with a shared key (Figure 9). 

 
 

Figure 9. Tamarin Proper 

In this Tamarin representation: 

-  Each rule represents an action in the 

protocol (sending or receiving a message). 

-  The [...] brackets represent the multiset 

before and after the action. 

-  !Initiator(I) and !Responder(R) denote the 

roles of the initiator and responder. 

-  Fr(~ni) denotes the generation of a fresh 

nonce ni. 

-  In(...) and Out(...) represent incoming and 

outgoing messages. 

-  St_I and St_R are states in the protocol. 

- --[...] →  denotes the transition from one 

state to another, with labels representing events 

in the protocol. 

In real-world protocols would typically be 

more complex, involving multiple steps and 

various cryptographic operations. The Tamarin 

Prover allows for the analysis of these protocols 

by checking them against various security 

properties like secrecy and authentication. 

III. COMPARISON 

In this section, we provide a detailed 

comparison of the pros and cons of various 

security protocol verification tools, as 

summarized in Table 1. The table offers an in-

depth and comprehensive comparison of four 

widely used tools in the field: Scyther, ProVerif, 

CryptoVerif, and Tamarin. This comparison 

evaluates the tools based on several key criteria, 

including their main purpose, protocol 

verification capabilities, methods for protocol 

specification, and a range of additional features 

offered by each tool. 

This analysis goes beyond simply listing the 

features of the tools; it provides a critical 

evaluation of their strengths and weaknesses in 

various contexts. Some tools, like Scyther, are 

better suited for handling standard protocol 

analyses with high efficiency, while others, such 

as Tamarin, are specifically designed to address 

more complex cryptographic challenges, 

including dynamic adversary models and 

mutable states. Similarly, ProVerif excels in 

symbolic verification of cryptographic protocols, 

providing an automated yet flexible approach, 

whereas CryptoVerif operates in the 

computational model, offering more realistic 

security guarantees at the cost of requiring more 

cryptographic expertise. 

By comparing the tools in this manner, we 

aim to assist researchers and practitioners in the 
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field of cybersecurity in making informed 

decisions about which tool best suits their 

specific needs. Whether the focus is on 

education, academic research, or real-world 

applications like cloud computing, IoT, or 5G 

networks, understanding the unique capabilities 

of each tool is critical. Scyther's accessibility and 

efficiency make it ideal for educational purposes 

and simple protocol analysis, whereas Tamarin's 

advanced features make it better suited for 

researchers dealing with complex scenarios. 

ProVerif strikes a balance between automation 

and flexibility, making it widely applicable in 

research settings, while CryptoVerif provides the 

computational rigor required for high-assurance 

security proofs. 

Additionally, this comparison serves as a 

valuable guide for understanding not just how 

each tool operates but also how these tools can 

be adapted or extended to meet the challenges 

of evolving technologies. By identifying the 

unique strengths of each tool - whether in terms 

of user-friendliness, protocol specification 

methods, or advanced cryptographic support -

we provide a clear roadmap for selecting the 

most appropriate tool for various security 

challenges. Furthermore, by highlighting the 

limitations of these tools, we suggest areas 

where future research and development could 

focus, aiming to improve the overall 

effectiveness and applicability of security 

protocol verification tools considering new 

technologies and security threats. 

 

TABLE 1. COMPARATIVE ANALYSIS OF SECURITY PROTOCOL VERIFICATION TOOLS 

Aspect Scyther 

(Pros) 

Scyther 

(Cons) 

Tamarin 

(Pros) 

Tamarin 

(Cons) 

ProVerif 

(Pros) 

ProVerif 

(Cons) 

CryptoVerif 

(Pros) 

CryptoVerif 

(Cons) 

Main 

Purpose 

Ideal for 

automatic 

verification 
of security 

protocols, 

especially 
standard 

analyses. 

May not 

offer the 

advanced 
features 

needed for 

complex 
protocol 

analysis 

scenarios. 

Designed for 

advanced, 

cutting-edge 
features in 

security 

protocol 
verification. 

Might be 

overly 

complex for 
basic or 

standard 

protocol 
analysis 

needs. 

Well-suited for 

symbolic 

verification of 
cryptographic 

protocols and 

properties. 

Symbolic 

model may 

not capture 
real-world 

cryptographic 

behaviors. 

Ideal for 

proving 

cryptographic 
security 

properties 

under 
computational 

assumptions. 

Requires more 

expertise in 

cryptography 
for effective 

use. 

Protocol 

Verification 

Excellent 

for 
scenarios 

with an 

unbounded 
number of 

sessions 

and nonces. 

Limited in 

handling 
more 

complex 

protocol 
structures 

compared to 

Tamarin. 

Superior in 

handling 
dynamic 

corruption 

and user-
specified 

adversaries. 

Requires 

more in-depth 
understanding 

of protocol 

complexities. 

Can handle 

infinite state 
spaces, highly 

efficient for 

verifying 
secrecy and 

authentication. 

Struggles 

with 
advanced 

cryptographic 

properties 
like non-

repudiation 

or side-
channel 

attacks. 

Supports 

verification 
against 

probabilistic 

polynomial-
time 

adversaries, 

more realistic 
in real-world 

cryptographic 

scenarios. 

Less automated 

than symbolic 
verification 

tools, requiring 

detailed 
specifications. 

Protocol 

Specification 

Linear role 

scripts 

make it 
user-

friendly 

and easier 
to 

understand. 

Less flexible 

in protocol 

specification 
compared to 

Tamarin’s 

Multiset 
Rewriting. 

Multiset 

Rewriting 

allows for 
more 

detailed and 

complex 
protocol 

specification. 

Higher 

learning 

curve due to 
the 

complexity 

of Multiset 
Rewriting. 

Process 

calculus-based 

specification 
allows 

flexibility in 

defining 
protocols. 

Can be 

complex to 

model certain 
types of 

protocols due 

to symbolic 
abstraction. 

Can model 

detailed 

cryptographic 
operations and 

assumptions, 

aligning more 
closely with 

practical 

cryptography. 

Complex to 

model 

protocols 
compared to 

symbolic 

approaches like 
ProVerif. 

Analysis 

Features 

Efficient 
characteriz

ations of 

protocols, 
with a 

finite 

representati
on of 

behaviors. 

May lack 
advanced 

analysis 

features like 
proof 

visualization. 

Advanced 
features like 

attack 

finding, 
visualization, 

and API 

support for 
global state. 

Could be 
overkill for 

simpler 

analysis 
requirements

. 

Supports 
verification of 

advanced 

cryptographic 
operations like 

encryption and 

digital 
signatures. 

Lacks 
computational 

model 

support, 
limiting its 

real-world 

applicability. 

Supports 
game-based 

proofs for 

advanced 
cryptographic 

analysis, more 

comprehensive 
in 

cryptographic 

assumptions. 

Computational 
proofs may be 

resource-

intensive and 
time-

consuming. 
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Cryptograp

hic Message 

Model 

Simpler, 

more 

straightfor

ward free 

term 

algebra. 

Less 

extensive 

than 

Tamarin's 

model, 

lacking 
advanced 

cryptographic 

supports. 

Extensive 

model 

including 

Diffie-

Hellman, 

bilinear 
pairing, and 

advanced 

cryptographi
c terms. 

The 

complexity of 

the 

cryptographic 

message 

model can be 
a barrier for 

less 

experienced 
users. 

Operates in the 

symbolic 

model, 

efficiently 

analyzing 

properties 
under idealized 

conditions. 

Less suitable 

for real-world 

cryptographic 

assumptions 

compared to 

computationa
l tools. 

Works within 

the 

computational 

model, 

providing 

stronger 
security 

guarantees. 

Not beginner-

friendly due to 

the complexity 

of the 

computational 

model. 

User-

friendliness 

More 

accessible 

for 
beginners 

and for 

educational 
purposes. 

Might not 

cater to 

needs of 
advanced 

users 

seeking 
sophisticated 

analysis 

tools. 

Interactive 

proof 

construction 
appeals to 

advanced 

users. 

Potentially 

intimidating 

for beginners 
or those 

seeking 

straightforwa
rd tools. 

Automated 

tool, accessible 

for researchers 
familiar with 

process calculi. 

Challenging 

for beginners 

unfamiliar 
with process 

calculi or 

formal 
verification. 

Flexible for 

expert users in 

cryptographic 
verification. 

Intimidating for 

those 

unfamiliar with 
formal 

cryptographic 

proofs. 

Efficiency 

Highly 

efficient for 

standard 
protocol 

analyses. 

May not 

perform as 

well in 
complex or 

advanced 

analysis 
scenarios. 

Ideal for 

complex 

protocol 
verifications 

due to its 

advanced 
capabilities. 

May require 

more 

resources 
and time for 

analysis 

compared to 
Scyther. 

Efficient in 

handling large-

scale protocols 
with symbolic 

analysis. 

Not designed 

for proving 

computational 
security 

properties. 

Can handle 

complex and 

real-world 
cryptographic 

systems, 

effective in 
resource-

intensive 

analysis. 

Resource-

intensive, 

especially for 
large and 

complex 

cryptographic 
systems. 

Educational 

Use 

Excellent 

resources 

for learning 
and 

teaching 

about 
security 

protocols. 

May not 

cover 

advanced 
topics in 

depth. 

Provides 

detailed 

tutorial 
materials 

and manual 

for advanced 
learning. 

Might be 

challenging 

for those 
new to 

security 

protocol 
analysis. 

Widely used in 

research for 

teaching 
formal 

verification 

methods. 

May require 

significant 

effort to fully 
understand 

for teaching 

advanced 
topics. 

Used in 

advanced 

cryptography 
teaching and 

research, 

provides deep 
insights into 

cryptographic 

protocol 
verification. 

Requires a deep 

understanding 

of 
computational 

cryptography. 

Developmen

t and 

Community 

Support 

Active 

developme

nt and 
available 

on GitHub; 

good 
community 

support. 

Limited to 

specific use 

cases and 
might not 

evolve 

rapidly. 

Continuous 

development 

with cutting-
edge 

updates; 

strong 
community 

involvement. 

The tool's 

complexity 

could limit 
its 

accessibility 

and user 
base. 

Strong 

community 

support and 
ongoing 

development. 

Focused on 

research and 

academic 
use; may not 

evolve as 

quickly as 
other tools. 

Actively 

developed and 

supported in 
the 

cryptographic 

community, 
strong tool for 

real-world 

cryptographic 
protocol 

analysis. 

High 

complexity 

limits 
accessibility for 

non-expert 

users. 

IV. DISCUSSION 

In this section, we discuss the four tools - 

Scyther, Tamarin, ProVerif, and CryptoVerif - 

through the lens of their ability to adapt to 

technological shifts, evolve alongside 

cryptographic advancements, improve user 

experience, address new security challenges and 

a specific case study. 

Adapting to Technological Shifts 

As technology evolves, so do the demands 

placed on security protocol verification tools. 

With the rise of new technologies like cloud 

computing, 5G, and blockchain, the need for 

tools that can handle increasingly complex and 

distributed systems has become paramount. 

Scyther, though highly efficient for traditional 

security protocol analysis, may fall short in 

addressing the intricacies of these evolving 

systems, particularly due to its simplified 

model. On the other hand, Tamarin excels in 

handling more advanced and dynamic 

environments, such as protocols in 5G networks 

and blockchain-based systems, thanks to its 

sophisticated handling of mutable global states 

and advanced adversary models. Both ProVerif 

and CryptoVerif are adapting to these 

technological changes by being used to verify 
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modern protocols like TLS 1.3 and Signal, 

which are critical for securing communications 

in the current landscape. 

Evolving with Cryptographic Developments 

The field of cryptography is constantly 

advancing, with new encryption algorithms and 

cryptographic primitives being developed to 

counteract emerging threats, such as those posed 

by quantum computing. CryptoVerif stands out 

in this respect, as it is specifically designed to 

prove cryptographic security under 

computational assumptions, which align more 

closely with practical cryptography and real-

world implementations. This makes CryptoVerif 

well-positioned to handle future cryptographic 

developments, including post-quantum 

cryptography. ProVerif also continues to evolve 

by extending its support for more sophisticated 

cryptographic operations, such as algebraic 

properties and stateful protocols, while 

Tamarin’s support for Diffie-Hellman 

exponentiation and bilinear pairings ensures that 

it can handle increasingly complex cryptographic 

scenarios. Scyther, while effective, remains more 

suited for standard cryptographic verification 

tasks and may not be as flexible in handling 

emerging cryptographic developments. 

Enhancing User Experience and Accessibility 

User experience and accessibility are crucial 

factors for the wider adoption of security 

verification tools, especially as they are 

increasingly used by non-experts, such as 

engineers or students, in addition to researchers. 

Scyther is often lauded for its user-friendly 

interface and intuitive design, making it 

particularly well-suited for beginners and 

educational purposes. However, more advanced 

users may find it lacking in features required for 

complex analyses. Tamarin, while more 

powerful in terms of capabilities, has a steeper 

learning curve, which could deter new users, but 

its interactive proof construction appeals to 

experienced users who require precise control 

over the verification process. ProVerif strikes a 

balance by offering automated verification 

while maintaining flexibility for those familiar 

with formal methods. CryptoVerif, on the other 

hand, is highly flexible but can be daunting for 

beginners due to its focus on computational 

proofs and the need for cryptographic expertise. 

Leveraging Cloud and Distributed Computing 

With the shift toward cloud computing and 

distributed systems, the need for tools that can 

verify security protocols across distributed 

environments is increasing. Tamarin excels in 

this area, with its support for modeling complex 

distributed systems, such as multi-party 

protocols and stateful systems that are prevalent 

in cloud infrastructures. ProVerif and 

CryptoVerif also show promise in adapting to 

cloud environments. For instance, ProVerif's 

ability to handle infinite state spaces makes it 

useful for protocols in large, distributed 

networks, while CryptoVerif’s focus on 

computational security allows it to verify the 

resilience of cryptographic systems in the cloud. 

Scyther, while efficient in traditional setups, 

may need more refinement to handle the 

growing complexity of cloud-based 

environments. 

Specialization for IoT and Emerging Networks 

The rise of Internet of Things (IoT) devices 

and emerging networks like 5G requires tools 

that can verify protocols designed for low-

power, resource-constrained devices. In this 

context, Tamarin stands out, as it has been 

successfully applied to protocols in 5G and 

similar networks, where security needs are 

paramount, and the network's complexity is 

vast. Scyther can efficiently verify simpler IoT 

protocols but lacks the advanced features 

required for comprehensive IoT network 

analysis. ProVerif and CryptoVerif also provide 

useful insights, particularly for ensuring 

confidentiality and authentication in IoT 

communication protocols. As IoT networks 

grow in scale and importance, these tools will 

need to continue evolving to address the unique 

challenges they present, such as lightweight 

cryptography and low-latency communication. 

Interoperability and Collaboration 

Interoperability between different 

verification tools is becoming more important 

as the complexity of protocols increases, and 
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multiple verification paradigms are needed for 

comprehensive security analysis. While Scyther 

and Tamarin offer standalone solutions, they 

don’t yet have strong capabilities for integration 

with other tools. ProVerif, on the other hand, 

has been adapted into other verification 

environments and frameworks, making it highly 

interoperable. CryptoVerif has also taken steps 

toward integration with EasyCrypt via the 

CV2EC translation tool, enabling users to verify 

cryptographic primitives in EasyCrypt after 

verifying protocols in CryptoVerif. 

Collaborative environments are essential for 

tackling modern, multifaceted security 

challenges, as no single tool may suffice for 

complex, real-world scenarios. 

Addressing New Security Threats 

The security landscape is continuously 

evolving, with new threats such as side-channel 

attacks, zero-day exploits, and the rise of post-

quantum cryptographic attacks. CryptoVerif is 

particularly well-suited to address these new 

challenges due to its grounding in the 

computational model, which allows it to verify 

cryptographic protocols under real-world 

conditions. ProVerif continues to adapt by 

adding support for new types of security 

properties, though its reliance on the symbolic 

model means it may miss certain real-world 

vulnerabilities. Tamarin’s ability to model 

complex adversary behaviors and dynamic 

corruption makes it particularly effective at 

discovering novel attacks, especially in cutting-

edge technologies like 5G and blockchain. 

Scyther, while highly efficient for standard 

security analysis, is more limited in addressing 

these emerging threats. 

Fostering Community and Open-Source 

Development 

Open-source development and community 

support are critical for the continued 

improvement and adoption of security 

verification tools. Scyther, Tamarin, ProVerif, 

and CryptoVerif all benefit from strong 

community involvement and active 

development. Tamarin has seen significant 

contributions from the research community, 

which has helped it stay on the cutting edge of 

security protocol verification. ProVerif and 

CryptoVerif are both widely used in academic 

research, and their open-source nature ensures 

that they continue to evolve with the latest 

advancements in cryptographic theory and 

protocol design. Scyther’s GitHub presence 

and active development make it a popular 

choice for educational purposes, though its 

development may not be as rapid as that of 

more complex tools. 

Educational Initiatives 

Educational initiatives play a vital role in 

fostering the next generation of security 

professionals. Scyther stands out for its ease of 

use and intuitive interface, making it an 

excellent teaching tool for students who are new 

to the field of security protocol analysis. Its 

straightforward setup allows students to focus 

on learning the core concepts without being 

overwhelmed by complex features. Tamarin and 

ProVerif, while more advanced, offer extensive 

tutorials and resources that cater to more 

experienced users or graduate-level students 

who are looking to deepen their understanding 

of formal verification methods. CryptoVerif, 

though challenging for beginners, is often 

included in advanced cryptography courses, 

where students can gain experience with 

computational proofs and cryptographic 

protocol verification. 

Case study 

In the context of Mobile Cloud Computing, 

ensuring confidentiality and integrity between 

the Mobile Device, Trusted Third Party (TTP), 

and Verifier is crucial. These tools aid 

researchers in protocol verification when 

proposing a new protocol. For instance, in papers 

[26], to develop a protocol suitable for the 

context, we start with basic information and then 

use tools to analyze and identify weaknesses, 

errors, or unreasonable points. This process 

continues until the desired value is achieved. 

Scyther can be effectively used to assess the 

Message Exchange Protocol, identifying 

limitations or vulnerabilities that could lead to 

potential attacks or failures. This understanding 
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enables the development of targeted solutions to 

address these issues. The following example 

outlines the message exchange process of a 

simple protocol involving three parties. 

Message Exchange Steps (Figure 10): 

1. The Mobile Device sends an initial 

attestation request to the Verifier, encrypted 

with the Verifier’s public key and signed using 

the Mobile Device’s private key. 

2. The TTP forwards a nonce to the Verifier 

to ensure freshness, encrypted with the 

Verifier’s public key. 

3. The Mobile Device sends verification 

data back to the TTP, including hashes of 

nonces and keys, encrypted and signed. 

4. The Mobile Device sends attestation 

information directly to the Verifier. 

5. The TTP sends the attestation results to 

the Verifier to confirm the results. 

6. The Verifier confirms the verification 

results back to the Mobile Device. 

Figure 11 below illustrates how Scyther 

presents the message exchange process, 

revealing the outcomes shown in Figure 12. Due 

to the basic design, the protocol appears 

susceptible to potential vulnerabilities. This 

figure clearly highlights the protocol's 

weaknesses, allowing developers to identify and 

address each error at various steps. Through this 

process, we can pinpoint current weaknesses in 

the protocol and propose solutions that align 

with the security requirements. This enables us 

to propose appropriate solutions to upgrade and 

refine the protocol. 

For example, the main drawback of Step 1 

in this message exchange protocol lies in its 

lack of strong integrity verification and replay 

attack prevention measures. Specifically, in 

Step 1, the Mobile Device sends an initial 

attestation request to the Verifier, which is 

encrypted using the Verifier's public key 

(pk(Verifier)) and signed with the Mobile 

Device's private key (sk(MobileDevice)). 

Although signing the message provides 

authenticity of the source (proving that the 

message came from the Mobile Device) and 

encryption provides confidentiality, the 

protocol lacks additional context-binding 

information to ensure that this request cannot 

be used out of its intended context. An attacker 

who intercepts this message could potentially 

replay it to disrupt the protocol or attempt to 

forge communications with the Verifier later. 

This weakness could lead to the Mobile Device 

unknowingly being part of a replay attack. 

Furthermore, there is no mention of 

timestamps, sequence numbers, or session 

identifiers, which are critical for ensuring that 

the messages cannot be reused by a malicious 

party at a different time. This makes the 

protocol vulnerable to replay attacks and 

context misuse. We addressed this drawback 

by incorporating an ephemeral key 

(EphemeralKeyM) alongside the signed 

NonceM. This key serves as an additional 

freshness factor and binding to the current 

session, reducing the effectiveness of replay 

attacks by making it more difficult for an 

attacker to reuse the captured message in a 

meaningful way. Additionally, having the 

Mobile Device sign the NonceM and other 

session-related information further strengthens 

the integrity of the request, ensuring that the 

Verifier can validate the origin and guarantee 

that the request has not been modified in 

transit. These measures significantly enhance 

the security of Step 1 against replay and 

impersonation attacks. (Figure 13). This 

enhancement provides protection against 

replay and impersonation attacks by 

confirming the authenticity of the sender and 

the integrity of the message. Figure 14 presents 

the result of proposed solution, which can 

improve the protocol to avoid several attacks. 

Finally, the Figure 15 demonstrates the 

alternative message exchange based on the 

proposed solution.
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Figure 10. Message exchange 
 

 
 

Figure 11. Scyther for ensuring confidentiality and integrity between Mobile Device, TTP, and Verifie

 

Figure 12. Result of verification
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Figure 13. The revised Step 01 in Scyther

Figure 14.  The result of proposed solution 

 

 
 

Figure 15. The revised message exchange of proposed solution
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Although no protocol is flawless, Scyther 

significantly contributes to protocol improvement 

by pinpointing weaknesses it detects, thereby 

enhancing the protocol's robustness. 

V. CONCLUSION 

In conclusion, this paper provides a detailed 

comparative analysis of four leading security 

protocol verification tools, Scyther, Tamarin, 

ProVerif, and CryptoVerif, and highlights their 

strengths, limitations, and unique contributions 

to the field. This work contributes to a deeper 

understanding of how these tools can be 

leveraged for different security challenges in 

modern technological environments, such as 

cloud computing, IoT, and 5G networks. A key 

contribution of this paper is the comprehensive 

comparison across critical dimensions like 

protocol verification capabilities, cryptographic 

support, user accessibility, and adaptability to 

technological shifts. This analysis helps 

researchers and practitioners make informed 

decisions on which tool to use based on their 

specific requirements, such as standard protocol 

analysis, advanced cryptographic proofs, or 

dynamic adversary modeling. Looking forward, 

this paper outlines potential areas for future 

work, such as the need for better interoperability 

between verification tools, improved support for 

post-quantum cryptography, and enhanced user 

accessibility to make these powerful tools more 

approachable for non-experts. The rapid growth 

in distributed systems and IoT also suggests a 

growing need for specialized tools capable of 

handling the complex security demands of these 

environments. This work contributes to the 

growing body of knowledge in security protocol 

verification, providing valuable insights that can 

guide future research and tool development. By 

addressing the gaps in current tools and 

suggesting directions for their evolution, this 

paper fosters a more secure and robust approach 

to the verification of security protocols in an 

ever-changing digital landscape.  
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