
Journal of Science and Technology on Information security

62 No 3.CS (23) 2024

Le Vinh Thinh*

Abstract— In the realm of internet security,

ensuring the robustness and integrity of

communication protocols is paramount. This

paper offers a comprehensive analysis of four

leading tools for security protocol verification:

Scyther, ProVerif, CryptoVerif, and Tamarin.

Each tool is evaluated for its unique strengths and

applications, particularly in the contexts of cloud

computing and IoT. The study begins with

Scyther, highlighting its proficiency in automated

falsification and multi-protocol verification. Next,

ProVerif is examined for its capabilities in

symbolic reasoning and its efficiency in handling

complex security protocols. The paper then

explores CryptoVerif’s computational approach

to protocol verification, focusing on how it models

and verifies protocols under a variety of

cryptographic assumptions. Finally, Tamarin’s

advanced features in symbolic analysis and its

ability to manage intricate security properties are

discussed, emphasizing its depth in formal

protocol verification. This comparative analysis

not only underscores the distinct contributions of

each tool but also provides a broader perspective

on their effectiveness in addressing both current

and emerging security challenges. By dissecting

the methodologies and limitations of these tools,

the paper aims to offer valuable insights into the

evolving landscape of security protocol

verification and potential future directions in this

critical area of cybersecurity research.

Tóm tắt— Trong lĩnh vực bảo mật Internet,

đảm bảo tính vững chắc và toàn vẹn của các giao

thức truyền thông là điều tối quan trọng. Bài báo

này cung cấp một phân tích toàn diện về bốn công

cụ hàng đầu để xác minh giao thức bảo mật:

Scyther, ProVerif, CryptoVerif và Tamarin. Mỗi

công cụ được đánh giá về những điểm mạnh và

ứng dụng độc đáo của nó, đặc biệt trong bối cảnh

điện toán đám mây và IoT. Nghiên cứu bắt đầu với

Scyther, nhấn mạnh khả năng làm giả tự động và

xác minh đa giao thức của nó. Tiếp theo, ProVerif

được xem xét về khả năng lập luận biểu tượng và

hiệu quả trong việc xử lý các giao thức bảo mật

phức tạp. Bài báo sau đó khám phá cách tiếp cận

tính toán của CryptoVerif đối với việc xác minh

giao thức, tập trung vào cách nó mô hình hóa và

xác minh các giao thức dưới nhiều giả định mật

mã khác nhau. Cuối cùng, các tính năng nâng cao

của Tamarin trong phân tích biểu tượng và khả

năng quản lý các thuộc tính bảo mật phức tạp

được thảo luận, nhấn mạnh độ sâu của nó trong

xác minh giao thức chính thức. Phân tích so sánh

này không chỉ nhấn mạnh những đóng góp riêng

biệt của mỗi công cụ mà còn cung cấp một góc nhìn

rộng hơn về hiệu quả của chúng trong việc giải

quyết cả những thách thức bảo mật hiện tại và mới

nổi. Bằng cách phân tích các phương pháp và hạn

chế của các công cụ này, bài báo nhằm cung cấp

những hiểu biết có giá trị về bối cảnh đang phát

triển của việc xác minh giao thức bảo mật và các

hướng đi tiềm năng trong tương lai trong lĩnh vực

nghiên cứu an ninh mạng quan trọng này.

Keywords—Verification protocol; falsification protocol,

analysis protocol, security, cryptography.

Từ khóa— Giao thức xác minh, giao thức làm giả, giao

thức phân tích, bảo mật, mật mã học.

I. INTRODUCTION

In the realm of digital security, security

protocols, particularly key agreement protocols,

are fundamental to ensuring secure

communications over potentially insecure

networks [1, 2]. These protocols enable the

establishment of shared secret keys, which are

crucial for safeguarding subsequent exchanges

of data. Given the critical role these protocols

play, verifying their robustness is essential to

prevent vulnerabilities such as man-in-the-

middle, replay attacks, and side-channel

 Paradigms in Security Protocol

Verification: A Multi-Tool Analysis

DOI: 10.54654/isj.v3i23.1059

This manuscript was received on October 4, 2024. It was

reviewed on November 11, 2024, revised on December

13, 2024 and accepted on December 18, 2024.

* Corresponding author

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 63

exploits. Recent studies have explored the

analysis and verification of hierarchical

identity-based authenticated key agreement

(HIB-AKA) protocols, employing advanced

tools like Scyther and Tamarin for a thorough

evaluation [3]. Research has also investigated

identity-based authenticated key agreement

protocols within the Diffie-Hellman family,

enabled by Weil or Tate pairings, to address

intricate issues related to cryptographic security

[4]. Moreover, the rise of quantum computing

has led to a focus on lightweight lattice-based

secure systems, especially those that offer

efficient security in the post-quantum era [5].

Scyther is one of the leading tools in security

protocol verification, recognized for its intuitive

interface and capacity to automate the

falsification of security protocols. Its ability to

handle an unbounded number of protocol

sessions makes it highly effective for analyzing

key agreement protocols across various

contexts, including cloud computing and IoT

environments [6 - 8]. Similarly, Tamarin is

widely regarded for its robust symbolic analysis

capabilities, enabling it to handle complex

security properties and a wide range of

adversary models [9 - 11]. This tool represents

a significant advancement in security protocol

verification by formalizing and verifying

protocols in large-scale, real-world scenarios

[12]. Verification tools can be widely applied in

various domains. For example, Pham et al. [13]

demonstrated a robust approach for web attack

detection using deep learning and natural

language processing techniques. While their

work focuses on attack detection, integrating

verification tools like Scyther or Tamarin could

further formalize the system's security

properties, ensuring robustness against evolving

threats .A notable development has been the

integration of finite-state machine (FSM) model

learning with Tamarin, which facilitates the

detection of logical errors, thereby improving

protocol verification processes. ProVerif also

plays a pivotal role in the formal verification of

security protocols, leveraging symbolic

reasoning to verify properties such as secrecy

and authentication. Using Horn clauses and a

resolution algorithm, ProVerif is adept at

analyzing various cryptographic protocols,

including MQV-based key exchange protocols

and identity-based schemes [14 - 16].

Moreover, ProVerif has been extended to verify

protocols with stateful and algebraic properties,

expanding its application to more complex

scenarios [17, 18]. Operating in the

computational model, CryptoVerif provides

stronger security guarantees than symbolic

models by verifying security properties such as

secrecy, indistinguishability, and authentication

under concrete cryptographic assumptions [19].

CryptoVerif is particularly suited for verifying

modern protocols like TLS 1.3 and Signal,

offering computational proofs that these

protocols are robust against sophisticated

attacks [20, 21]. It has also been employed to

verify dynamic key compromise scenarios,

demonstrating its utility in evaluating key

exchange protocols under evolving threats, such

as in TLS 1.3 and the WireGuard VPN protocol

[22, 23]. Additionally, the introduction of

CV2EC, a translation tool bridging CryptoVerif

and EasyCrypt, has further expanded

CryptoVerif’s capabilities by allowing for the

verification of cryptographic primitives

alongside protocol verification, as demonstrated

in various case studies [24]. Beyond protocol

verification, Tamarin has proven invaluable in

large-scale applications such as multi-party

cryptographic systems and dynamic

environments like 5G networks. Its ability to

formalize advanced adversary models and

verify stateful protocols has made it an essential

tool for evaluating complex security properties

under dynamic threats. Together, these tools,

Scyther, ProVerif, CryptoVerif, and Tamarin,

provide a comprehensive suite for security

protocol verification, each contributing distinct

methodologies that address the evolving

challenges in securing communication

protocols across a wide range of applications.

This paper is organized into five sections,

each providing an in-depth exploration of key

aspects related to security protocol verification

tools. Section 2 introduces the primary tools

under consideration, including Scyther,

ProVerif, CryptoVerif, and Tamarin, and

highlights their relevance in today's security

Journal of Science and Technology on Information security

64 No 3.CS (23) 2024

landscape. Section III focuses on a comparative

analysis of these tools, examining their features,

strengths, and limitations across various

parameters. Section IV presents a discussion of

the tools and case study, analyzing how they

adapt to technological shifts, evolve with

cryptographic advancements, enhance user

experience, and address emerging security

challenges. Finally, Section V concludes the

paper by summarizing the main findings and

outlining the broader implications for future

research and tool development in security

protocol verification.

 II. THEORETICAL COMPARISON OF SECURITY

PROTOCOL VERIFICATION TOOLS

In this section, the paper turns the attention

to the foundational aspects of our study. Previous

work [25] provided only a basic and a simple

comparison of two methods, without addressing

their relevance and importance in the current

context. This paper overcome these limitations

by offering a more comprehensive and timely

analysis .The session is organized into four

subsections, each dedicated to a significant tool

in the field of security protocol verification:

Scyther, ProVerif, CryptoVerif, and Tamarin.

The first subsection focuses on Scyther, a key

tool for verifying and analyzing security

protocols. We will explore its methodology,

distinctive features, and its wide-ranging

applications in both industrial and academic

contexts. Additionally, we will assess its

strengths and limitations to provide a

comprehensive understanding of its impact in

security protocol analysis. The following

subsection will delve into ProVerif, examining

its unique symbolic reasoning approach,

capabilities, and diverse use cases in

cryptographic protocol verification. This

analysis will highlight how ProVerif advances

the field by efficiently verifying key security

properties such as secrecy and authentication.

Next, we will explore CryptoVerif, focusing on

its role in computational verification and how it

models cryptographic assumptions to provide

stronger security guarantees. Finally, we will

present a detailed comparison of these tools,

outlining their respective advantages and

drawbacks, offering a holistic view of their

contributions to security protocol verification.

A. The Scyther Tool

Detailed Analysis of Scyther's Methodology and

Features

Scyther represents a major advancement in

the analysis of security protocols. Designed with

a focus on usability and efficiency, this tool uses

a distinctive methodology that distinguishes it

from other verification systems. At its core is a

pattern refinement algorithm, which enables a

concise representation of potentially infinite sets

of execution traces. This algorithm plays a key

role in examining classes of attacks, potential

protocol behaviors, and validating the

correctness of security protocols across an

unlimited number of sessions.

Scyther operates on the well-established

Dolev-Yao intruder model, a commonly used

approach in the analysis of security protocols.

This model assumes that an attacker has full

control over the network but cannot break

cryptographic primitives. Leveraging this model,

Scyther simulates possible attacks and uncovers

vulnerabilities in protocols under review. A

standout feature of the tool is its capacity to

handle unbounded verification with guaranteed

termination, allowing it to provide definitive

conclusions regarding the security of the

analyzed protocols.

Case Studies and Applications in Various Contexts

Scyther has demonstrated its versatility and

effectiveness across a wide range of applications,

both in academic and industrial settings. It has

been employed to analyze and verify the security

of various protocols. In the industrial domain,

Scyther has been pivotal in the verification of

complex security protocols, such as IKE

(versions 1 and 2) and ISO/IEC 9798, providing

critical insights into their security properties.

Additionally, its application in academic

environments has been valuable for teaching

purposes, allowing students to explore the

nuances of protocol analysis. Scyther’s user-

friendly interface, coupled with its graphical

depiction of protocol interactions, makes it a

useful educational tool, helping students and

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 65

researchers grasp the intricacies of security

protocols more effectively.

Strengths and Limitations

 One of Scyther’s key strengths lies in its ease

of use, which lowers the barrier for those new to

the field of security protocol analysis. Its

automated analysis capabilities allow for quick

and efficient verification, saving both time and

resources. Furthermore, Scyther's ability to

perform unbounded verification and deliver

conclusive results adds to its reliability and

effectiveness, making it a valuable tool for

security professionals and researchers alike.

However, while it excels in analyzing certain

security properties, such as authentication and

secrecy, it may struggle with more complex

properties like non-repudiation or handling

certain denial-of-service (DoS) attacks.

Moreover, its reliance on the Dolev-Yao model

although advantageous in many scenarios can

limit its applicability in real-world cases that

involve physical attacks or side-channel attacks,

as these aspects are not accounted for in the

model.

Overall, Scyther is a powerful, user-friendly

tool that significantly contributes to the field of

security protocol analysis. Its methodology,

applications, strengths, and limitations make it

an essential resource for researchers, educators,

and security professionals (Figure 1). The tool

provides an automated, comprehensive approach

to protocol verification, enhancing the

understanding and fortification of security

protocols across various digital communication

environments. Like any tool, however, its

effectiveness is optimized when users are aware

of its scope and limitations, ensuring that it is

applied appropriately within the context of

broader security analysis strategies.

Figure 1. Overall key aspects of Scyther

Language

 The Scyther tool uses a specialized language

for specifying security protocols, known as the

Scyther Specification Language (SSL). This

language is designed to be simple yet expressive

enough to define various aspects of security

protocols, including roles, messages, and

cryptographic operations.

Key Features of SSL:

1. Role-Based Specification: Protocols are

defined in terms of roles (like initiator,

responder) and their interactions.

2. Message Format: Messages are defined

using a straightforward syntax that describes the

composition of messages sent and received.

3. Cryptographic Constructs: Common

cryptographic operations like encryption,

decryption, and hashing are supported.

4. Variables and Constants: The language

allows the use of variables (for dynamic values like

nonces) and constants (for static values like keys).

To be clearer, considering an example is of

the Needham-Schroeder Public Key Protocol

using the Scyther SSL. This protocol is

designed for establishing a secure

communication channel between two parties,

identified as I (Initiator) and R (Responder), by

exchanging nonces (random numbers) to verify

each other's identity and establish shared

secrets. Let's break down the example:

Protocol Definition:

Protocol ns3(I, R) {...}: Defines a new

protocol named ns3 with two roles, I (Initiator)

and R (Responder).

Role I (Initiator):

1. fresh ni: Nonce; Initiator generates a fresh

nonce ni.

2. var nr: Nonce; Declares a variable nr to

store the nonce received from the Responder.

3. send_1(I, R, {ni, I}pk(R)); Initiator sends

a message to Responder, containing the nonce ni

Journal of Science and Technology on Information security

66 No 3.CS (23) 2024

and its identity I, encrypted with Responder's

public key pk(R).

4. recv_2(R, I, {ni, nr}pk(I)); Initiator

receives a message from Responder, containing

the original nonce ni and Responder's nonce nr,

encrypted with Initiator's public key pk(I).

5. send_3(I, R, {nr}pk(R)); Initiator sends

back the nonce nr received from Responder,

encrypted with Responder's public key pk(R).

The Initiator then makes several claims about

the protocol's security properties, such as secrecy

of nonces, aliveness, agreement, commitment,

and synchronization.

Role R (Responder):

1. var ni: Nonce; Responder declares a variable

ni to store the nonce received from the

Initiator.

2. fresh nr: Nonce; Responder generates a fresh

nonce nr.

3. recv_1(I, R, {ni, I}pk(R)); Responder

receives the first message from Initiator,

decrypts it to get Initiator's nonce ni and

identity I.

4. send_2(R, I, {ni, nr}pk(I)); Responder sends

a message back to Initiator, containing the

received nonce ni and its own nonce nr,

encrypted with Initiator's public key pk(I).

5. recv_3(I, R, {nr}pk(R)); Responder receives

the final message from Initiator, containing

the nonce nr.

The Responder also makes similar claims

about the protocol's security properties.

Security Claims:

• claim(...); These statements are used to

assert various security properties like secrecy

(nonces are not known to others), aliveness

(other party is active), agreement (both parties

agree on the nonces), commitment (a party is

committed to a session), and synchronization

(nonces are synchronized between parties).

This protocol aims to securely establish a

shared secret between the Initiator and

Responder, ensuring that both parties are who

they claim to be. The claims are used to verify

the security properties of the protocol using the

Scyther tool. The result is presented in Figure 2

that shows the number of attacks can affect the

protocol.

Figure 2. Scyther language and Input/Output

Furthermore, Scyther can trace attacks by

presenting graphs, as demonstrated in Figure 3.

Figure 3. Attack claims in Scyther

B. Proverif

Detailed Analysis of ProVerif's Methodology and

Features

ProVerif is a powerful tool widely used for

the symbolic verification of security protocols.

Unlike Scyther, which primarily handles

unbounded verification of protocol sessions,

ProVerif excels at verifying security properties

such as secrecy, authentication, and integrity

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 67

using symbolic reasoning. It is based on an

abstraction known as Horn clauses, and it uses a

resolution algorithm to automatically analyze

cryptographic protocols. ProVerif operates in the

Dolev-Yao model, where the adversary has

complete control over the network but cannot

break cryptographic primitives. One of

ProVerif’s key features is its ability to handle

infinite state spaces, meaning it can analyze

protocols with an unbounded number of sessions

or messages without explicitly enumerating all

possible states. This capability makes it highly

efficient for analyzing security properties in

complex protocols. Additionally, ProVerif can

verify a range of cryptographic operations, such

as encryption, digital signatures, and Diffie-

Hellman key exchanges, making it versatile for

various protocol types.

ProVerif uses a query-based approach, where

users pose specific security questions (queries)

about the protocol, and ProVerif determines

whether those properties hold or if there are

attacks that violate them. For example, a typical

query might ask if a shared secret remains

confidential during communication. ProVerif’s

internal algorithms attempt to prove or refute

such queries, providing a detailed analysis of

potential vulnerabilities.

Case Studies and Applications in Various Contexts

ProVerif has been applied in numerous real-

world contexts, underscoring its practical utility.

It has been particularly effective in the

verification of cryptographic protocols such as

MQV-based key exchange protocols, where it

can detect subtle attacks like the Unknown Key

Share (UKS) attack. Moreover, ProVerif has

been used to verify stateful protocols, where the

state of a system changes over time, such as in

TLS (Transport Layer Security) and Single Sign-

On (SSO) authentication systems. In industry,

ProVerif has been instrumental in analyzing the

security of software-defined networking (SDN)

protocols, where its ability to handle both

symbolic and algebraic properties is critical.

Academic research also widely employs

ProVerif to model complex systems, from cloud

authentication mechanisms to IoT

communication protocols. In these contexts,

ProVerif provides crucial insights into protocol

weaknesses, helping to ensure that they meet the

desired security standards.

Strengths and Limitations

One of ProVerif’s major strengths is its

automation and ability to handle infinite state

spaces, making it extremely efficient for

protocols that involve an unbounded number of

participants or messages (Figure 04). Its query-

based approach also allows for flexible and

specific analysis, meaning users can tailor their

security questions based on the requirements of

the protocol they are investigating. Additionally,

ProVerif's support for various cryptographic

primitives, including symmetric encryption,

public-key encryption, and hash functions,

makes it applicable to a wide variety of modern

protocols. However, ProVerif is not without

limitations. It operates under the symbolic

Dolev-Yao model, which abstracts cryptographic

primitives, potentially oversimplifying certain

real-world behaviors of cryptographic systems.

As a result, it might miss attacks that exploit the

actual implementation of cryptographic

algorithms. Furthermore, while ProVerif excels

in analyzing secrecy and authentication, it may

struggle with other properties like non-

repudiation or attacks that rely on side-channel

information, as these are not fully modeled in the

symbolic approach. Additionally, ProVerif's

learning curve can be steep for beginners due to

the need for users to understand both formal

methods and protocol-specific features.

Figure 4. Overall key aspects of ProVerif

 Language

The ProVerif language, used to model

security protocols, is designed to be flexible and

expressive. Protocols are represented using a

process calculus, where communication is

modeled using channels and cryptographic

Journal of Science and Technology on Information security

68 No 3.CS (23) 2024

operations like encryption and decryption are

built-in functions. ProVerif provides users with

the ability to specify protocol actions, such as

sending or receiving messages, generating fresh

keys, or performing cryptographic operations, all

within the formal framework of the process

calculus. Figure 05 demonstrates the Needham-

Schroeder Public Key Protocol implement in

Proverif and its output.

Figure 5. The Needham-Schroeder Public Key

Protocol implement in Proverif and its output.

This language supports the specification of

security queries, allowing users to express

properties such as confidentiality, authentication,

and integrity. ProVerif’s language also supports

equivalences, allowing users to check if two

different executions of a protocol are

indistinguishable to an adversary, which is useful

for analyzing anonymity or privacy properties.

Despite its power, the language can be complex

to master, requiring users to familiarize

themselves with process calculi and formal

security properties.

C. CryptoVerif

Detailed Analysis of CryptoVerif's Methodology

and Features

CryptoVerif is a computational protocol

verifier designed to provide cryptographic

security proofs under real-world cryptographic

assumptions. Unlike symbolic verification tools

like ProVerif, which abstract cryptographic

primitives using the Dolev-Yao model,

CryptoVerif operates within the computational

model, offering stronger and more realistic

security guarantees. It aims to prove that

protocols are secure against probabilistic

polynomial-time (PPT) adversaries, which aligns

more closely with how cryptography is

implemented in practice. CryptoVerif’s

methodology is based on game-based

cryptographic proofs, a common approach used

in modern cryptography. The tool models

protocols as probabilistic processes, defining a

sequence of games (cryptographic reductions)

where each game is progressively transformed to

get closer to a proof of the desired security

property. This approach is particularly suited for

proving secrecy, indistinguishability, and

authentication properties under computational

assumptions such as the hardness of discrete

logarithm or Diffie-Hellman problems. One of

the key features of CryptoVerif is its ability to

generate proofs that protocols are secure in the

presence of active adversaries, who can observe,

intercept, and modify communications.

CryptoVerif constructs formal proofs by

showing that the success probability of any

adversary is negligible. The tool also supports

various cryptographic primitives, including

symmetric encryption, public-key encryption,

message authentication codes, digital signatures,

and key exchange mechanisms, making it highly

versatile. Unlike symbolic tools, CryptoVerif

does not attempt to generate counterexamples or

attacks. Instead, it focuses on proving the

absence of vulnerabilities by analyzing protocol

behavior under standard computational

assumptions (Figure 6).

Case Studies and Applications in Various Contexts

CryptoVerif has been applied to several

high-profile cryptographic protocols, providing

formal proofs of security for some of the most

widely used systems. One prominent case study

involves the verification of the TLS 1.3 protocol,

a critical protocol for secure internet

communication. By analyzing TLS 1.3,

CryptoVerif has been able to demonstrate its

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 69

resistance to various attacks, ensuring that it

meets strict security standards under

computational assumptions. Additionally,

CryptoVerif has been employed in verifying the

security of the Signal protocol, a popular end-to-

end encryption protocol used in secure

messaging applications. This analysis has helped

validate Signal’s claims regarding secrecy and

authentication. Another notable application of

CryptoVerif is in the evaluation of VPN

protocols, such as WireGuard. In this context, the

tool has been used to confirm that WireGuard's

cryptographic components (e.g., its key

exchange and encryption mechanisms) are

secure under the computational model. These

real-world case studies highlight CryptoVerif's

utility in validating the security properties of

widely deployed protocols in modern

communication systems. CryptoVerif is also

applicable in post-quantum cryptography, a

rapidly growing area of research in response to

the potential threats posed by quantum

computing. By verifying lattice-based and other

post-quantum cryptographic schemes,

CryptoVerif contributes to ensuring that future

cryptographic systems remain secure even in a

post-quantum world.

Figure 6. Overall key aspects of CryptoVerif

Strengths and Limitations

CryptoVerif’s primary strength lies in its

ability to generate computational security proofs.

Because it operates in the computational model,

its results are more aligned with practical

cryptography and real-world implementations.

This makes CryptoVerif especially valuable

when analyzing protocols that require strong

security guarantees, such as those used in

banking systems, secure messaging, or national

security applications. Furthermore, CryptoVerif

supports a wide range of cryptographic

primitives and can handle complex protocol

behaviors. The tool’s game-based approach

allows for detailed cryptographic reductions,

enabling researchers to develop strong security

proofs. However, CryptoVerif also has some

limitations. Its reliance on the computational

model means that it often requires more detailed

protocol specifications compared to symbolic

tools like ProVerif. This makes CryptoVerif less

automated, requiring substantial expertise in

cryptographic concepts to accurately model

protocols and interpret results. Additionally,

generating computational proofs is

computationally intensive, so the tool may

require significant resources and time to analyze

complex protocols. Another limitation is that

CryptoVerif does not produce attack

counterexamples like symbolic tools. Instead, it

provides proofs of security or reports that the

security proof could not be completed. This

means it is primarily used for verifying protocols

that are believed to be secure, rather than

identifying vulnerabilities in protocols.

Language

The CryptoVerif language is designed for

specifying cryptographic protocols at a detailed

level. It is more expressive and complex than the

symbolic languages used by tools like ProVerif

because it must account for probabilistic

processes and computational assumptions. The

language allows users to specify the actions and

cryptographic operations of the protocol, as well

as the adversary's capabilities. In CryptoVerif,

users can define secrecy properties,

authentication goals, and indistinguishability

properties using cryptographic reductions. These

are the types of security properties that are

proven or disproven based on the probabilistic

behavior of the protocol under analysis. While

the language is powerful, it is also challenging to

learn and requires a solid understanding of both

cryptography and formal verification techniques.

Figure 7 presents an example of language use in

CryptoVerif. Moreover, the language is closely

tied to the game-based proof methodology. Users

must define cryptographic games that represent

the protocol’s behavior in the presence of

adversaries. CryptoVerif then applies reductions

to simplify these games, ultimately proving the

Journal of Science and Technology on Information security

70 No 3.CS (23) 2024

security properties or showing that they hold a

negligible advantage for the adversary.

Figure 7. Language in CrytoVerif

D. The Tamarin Prover

Capabilities and Design

The Tamarin Prover is a highly advanced

tool for the verification of security protocols,

offering both falsification and unbounded

verification within the symbolic model. It utilizes

multiset rewriting systems to specify protocols,

which define a labeled transition system. This

system's state includes a symbolic representation

of the adversary’s knowledge, network

messages, freshly generated values, and the

protocol's internal state. Tamarin also supports

the equational specification of cryptographic

operators, such as Diffie-Hellman

exponentiation and bilinear pairings, making it

well-suited to model complex cryptographic

scenarios [10].

Case Studies and Applications

Tamarin’s flexibility and power are evident

through its applications across a broad range of use

cases. It has been successfully employed to model

and analyze web applications, with its repository

featuring numerous examples from academic

papers, serving as a rich resource for modeling

other protocols. Its ability to conduct symbolic

analysis of security protocols further highlights its

practical value in real-world settings.

Strengths and Limitations

Tamarin shines when it comes to handling

protocols that involve non-monotonic mutable

global state and intricate control flows, such as

loops. The prover supports a form of induction and

efficiently parallelizes proof searches, making it an

effective tool for complex protocol analysis.

However, its reliance on the symbolic model

means it is limited to capturing attacks that fit

within the model and the defined equational theory.

Moreover, due to the undecidable nature of the

underlying verification problems, Tamarin does

not guarantee termination during verification.

Notable Applications and Use Cases

Tamarin has played a crucial role in

identifying new vulnerabilities, significantly

influencing the security of several real-world

systems. Its formal verification of 5G protocols

and symbolic analysis of web single-sign-on

(SSO) protocols are key examples of its impact

on critical, modern technologies. Several

academic papers and surveys have explored

Tamarin’s capabilities and contributions. For

example, one study [12] provides a detailed

overview of Tamarin, highlighting the key

findings and achievements made using the tool,

while another paper [10] delves deeper into its

design and broad range of applications.

In summary, the Tamarin Prover is a robust

and flexible tool in the realm of security protocol

verification. Its sophisticated capabilities and

wide range of applications, from web protocols

to 5G technologies, underscore its significant

role in securing digital communication. While

Tamarin's strengths in managing complex

protocols and cryptographic operators are clear,

it is important to recognize its limitations within

the symbolic model and its potential for non-

termination. The extensive body of research and

case studies surrounding Tamarin not only

emphasizes its importance but also provides a

valuable resource for ongoing exploration and

development in security protocol analysis. The

following diagram (Figure 8) summarizes the

key aspects of the Tamarin Prover.

Figure 8. Overall key aspects of Tamarin

Language

The Tamarin Prover uses a specialized

language based on multiset rewriting rules for

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 71

specifying and analyzing security protocols.

This language is designed to express the

behavior of protocols in terms of actions (like

sending and receiving messages) and states. It

is quite expressive and allows for the

specification of complex properties and

behaviors of security protocols.

Key Features of Tamarin's Language:

1. Multiset Rewriting Rules: These rules

define how the state of the protocol evolves with

each action.

2. State Representation: The state includes

the knowledge of the adversary, the messages on

the network, and the internal state of the protocol

participants.

3. Fact-Based Syntax: The language uses

facts to represent the state of the system and the

actions taken by the protocol participants.

4. Support for Cryptographic Primitives:

Tamarin can model various cryptographic

operations and equational theories.

Let's consider a simple example of a protocol

with two roles: an initiator and a responder. The

protocol involves the initiator sending a nonce to

the responder, who then responds with the nonce

encrypted with a shared key (Figure 9).

Figure 9. Tamarin Proper

In this Tamarin representation:

- Each rule represents an action in the

protocol (sending or receiving a message).

- The [...] brackets represent the multiset

before and after the action.

- !Initiator(I) and !Responder(R) denote the

roles of the initiator and responder.

- Fr(~ni) denotes the generation of a fresh

nonce ni.

- In(...) and Out(...) represent incoming and

outgoing messages.

- St_I and St_R are states in the protocol.

- --[...] → denotes the transition from one

state to another, with labels representing events

in the protocol.

In real-world protocols would typically be

more complex, involving multiple steps and

various cryptographic operations. The Tamarin

Prover allows for the analysis of these protocols

by checking them against various security

properties like secrecy and authentication.

III. COMPARISON

In this section, we provide a detailed

comparison of the pros and cons of various

security protocol verification tools, as

summarized in Table 1. The table offers an in-

depth and comprehensive comparison of four

widely used tools in the field: Scyther, ProVerif,

CryptoVerif, and Tamarin. This comparison

evaluates the tools based on several key criteria,

including their main purpose, protocol

verification capabilities, methods for protocol

specification, and a range of additional features

offered by each tool.

This analysis goes beyond simply listing the

features of the tools; it provides a critical

evaluation of their strengths and weaknesses in

various contexts. Some tools, like Scyther, are

better suited for handling standard protocol

analyses with high efficiency, while others, such

as Tamarin, are specifically designed to address

more complex cryptographic challenges,

including dynamic adversary models and

mutable states. Similarly, ProVerif excels in

symbolic verification of cryptographic protocols,

providing an automated yet flexible approach,

whereas CryptoVerif operates in the

computational model, offering more realistic

security guarantees at the cost of requiring more

cryptographic expertise.

By comparing the tools in this manner, we

aim to assist researchers and practitioners in the

Journal of Science and Technology on Information security

72 No 3.CS (23) 2024

field of cybersecurity in making informed

decisions about which tool best suits their

specific needs. Whether the focus is on

education, academic research, or real-world

applications like cloud computing, IoT, or 5G

networks, understanding the unique capabilities

of each tool is critical. Scyther's accessibility and

efficiency make it ideal for educational purposes

and simple protocol analysis, whereas Tamarin's

advanced features make it better suited for

researchers dealing with complex scenarios.

ProVerif strikes a balance between automation

and flexibility, making it widely applicable in

research settings, while CryptoVerif provides the

computational rigor required for high-assurance

security proofs.

Additionally, this comparison serves as a

valuable guide for understanding not just how

each tool operates but also how these tools can

be adapted or extended to meet the challenges

of evolving technologies. By identifying the

unique strengths of each tool - whether in terms

of user-friendliness, protocol specification

methods, or advanced cryptographic support -

we provide a clear roadmap for selecting the

most appropriate tool for various security

challenges. Furthermore, by highlighting the

limitations of these tools, we suggest areas

where future research and development could

focus, aiming to improve the overall

effectiveness and applicability of security

protocol verification tools considering new

technologies and security threats.

TABLE 1. COMPARATIVE ANALYSIS OF SECURITY PROTOCOL VERIFICATION TOOLS

Aspect Scyther

(Pros)

Scyther

(Cons)

Tamarin

(Pros)

Tamarin

(Cons)

ProVerif

(Pros)

ProVerif

(Cons)

CryptoVerif

(Pros)

CryptoVerif

(Cons)

Main

Purpose

Ideal for

automatic

verification
of security

protocols,

especially
standard

analyses.

May not

offer the

advanced
features

needed for

complex
protocol

analysis

scenarios.

Designed for

advanced,

cutting-edge
features in

security

protocol
verification.

Might be

overly

complex for
basic or

standard

protocol
analysis

needs.

Well-suited for

symbolic

verification of
cryptographic

protocols and

properties.

Symbolic

model may

not capture
real-world

cryptographic

behaviors.

Ideal for

proving

cryptographic
security

properties

under
computational

assumptions.

Requires more

expertise in

cryptography
for effective

use.

Protocol

Verification

Excellent

for
scenarios

with an

unbounded
number of

sessions

and nonces.

Limited in

handling
more

complex

protocol
structures

compared to

Tamarin.

Superior in

handling
dynamic

corruption

and user-
specified

adversaries.

Requires

more in-depth
understanding

of protocol

complexities.

Can handle

infinite state
spaces, highly

efficient for

verifying
secrecy and

authentication.

Struggles

with
advanced

cryptographic

properties
like non-

repudiation

or side-
channel

attacks.

Supports

verification
against

probabilistic

polynomial-
time

adversaries,

more realistic
in real-world

cryptographic

scenarios.

Less automated

than symbolic
verification

tools, requiring

detailed
specifications.

Protocol

Specification

Linear role

scripts

make it
user-

friendly

and easier
to

understand.

Less flexible

in protocol

specification
compared to

Tamarin’s

Multiset
Rewriting.

Multiset

Rewriting

allows for
more

detailed and

complex
protocol

specification.

Higher

learning

curve due to
the

complexity

of Multiset
Rewriting.

Process

calculus-based

specification
allows

flexibility in

defining
protocols.

Can be

complex to

model certain
types of

protocols due

to symbolic
abstraction.

Can model

detailed

cryptographic
operations and

assumptions,

aligning more
closely with

practical

cryptography.

Complex to

model

protocols
compared to

symbolic

approaches like
ProVerif.

Analysis

Features

Efficient
characteriz

ations of

protocols,
with a

finite

representati
on of

behaviors.

May lack
advanced

analysis

features like
proof

visualization.

Advanced
features like

attack

finding,
visualization,

and API

support for
global state.

Could be
overkill for

simpler

analysis
requirements

.

Supports
verification of

advanced

cryptographic
operations like

encryption and

digital
signatures.

Lacks
computational

model

support,
limiting its

real-world

applicability.

Supports
game-based

proofs for

advanced
cryptographic

analysis, more

comprehensive
in

cryptographic

assumptions.

Computational
proofs may be

resource-

intensive and
time-

consuming.

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 73

Cryptograp

hic Message

Model

Simpler,

more

straightfor

ward free

term

algebra.

Less

extensive

than

Tamarin's

model,

lacking
advanced

cryptographic

supports.

Extensive

model

including

Diffie-

Hellman,

bilinear
pairing, and

advanced

cryptographi
c terms.

The

complexity of

the

cryptographic

message

model can be
a barrier for

less

experienced
users.

Operates in the

symbolic

model,

efficiently

analyzing

properties
under idealized

conditions.

Less suitable

for real-world

cryptographic

assumptions

compared to

computationa
l tools.

Works within

the

computational

model,

providing

stronger
security

guarantees.

Not beginner-

friendly due to

the complexity

of the

computational

model.

User-

friendliness

More

accessible

for
beginners

and for

educational
purposes.

Might not

cater to

needs of
advanced

users

seeking
sophisticated

analysis

tools.

Interactive

proof

construction
appeals to

advanced

users.

Potentially

intimidating

for beginners
or those

seeking

straightforwa
rd tools.

Automated

tool, accessible

for researchers
familiar with

process calculi.

Challenging

for beginners

unfamiliar
with process

calculi or

formal
verification.

Flexible for

expert users in

cryptographic
verification.

Intimidating for

those

unfamiliar with
formal

cryptographic

proofs.

Efficiency

Highly

efficient for

standard
protocol

analyses.

May not

perform as

well in
complex or

advanced

analysis
scenarios.

Ideal for

complex

protocol
verifications

due to its

advanced
capabilities.

May require

more

resources
and time for

analysis

compared to
Scyther.

Efficient in

handling large-

scale protocols
with symbolic

analysis.

Not designed

for proving

computational
security

properties.

Can handle

complex and

real-world
cryptographic

systems,

effective in
resource-

intensive

analysis.

Resource-

intensive,

especially for
large and

complex

cryptographic
systems.

Educational

Use

Excellent

resources

for learning
and

teaching

about
security

protocols.

May not

cover

advanced
topics in

depth.

Provides

detailed

tutorial
materials

and manual

for advanced
learning.

Might be

challenging

for those
new to

security

protocol
analysis.

Widely used in

research for

teaching
formal

verification

methods.

May require

significant

effort to fully
understand

for teaching

advanced
topics.

Used in

advanced

cryptography
teaching and

research,

provides deep
insights into

cryptographic

protocol
verification.

Requires a deep

understanding

of
computational

cryptography.

Developmen

t and

Community

Support

Active

developme

nt and
available

on GitHub;

good
community

support.

Limited to

specific use

cases and
might not

evolve

rapidly.

Continuous

development

with cutting-
edge

updates;

strong
community

involvement.

The tool's

complexity

could limit
its

accessibility

and user
base.

Strong

community

support and
ongoing

development.

Focused on

research and

academic
use; may not

evolve as

quickly as
other tools.

Actively

developed and

supported in
the

cryptographic

community,
strong tool for

real-world

cryptographic
protocol

analysis.

High

complexity

limits
accessibility for

non-expert

users.

IV. DISCUSSION

In this section, we discuss the four tools -

Scyther, Tamarin, ProVerif, and CryptoVerif -

through the lens of their ability to adapt to

technological shifts, evolve alongside

cryptographic advancements, improve user

experience, address new security challenges and

a specific case study.

Adapting to Technological Shifts

As technology evolves, so do the demands

placed on security protocol verification tools.

With the rise of new technologies like cloud

computing, 5G, and blockchain, the need for

tools that can handle increasingly complex and

distributed systems has become paramount.

Scyther, though highly efficient for traditional

security protocol analysis, may fall short in

addressing the intricacies of these evolving

systems, particularly due to its simplified

model. On the other hand, Tamarin excels in

handling more advanced and dynamic

environments, such as protocols in 5G networks

and blockchain-based systems, thanks to its

sophisticated handling of mutable global states

and advanced adversary models. Both ProVerif

and CryptoVerif are adapting to these

technological changes by being used to verify

Journal of Science and Technology on Information security

74 No 3.CS (23) 2024

modern protocols like TLS 1.3 and Signal,

which are critical for securing communications

in the current landscape.

Evolving with Cryptographic Developments

The field of cryptography is constantly

advancing, with new encryption algorithms and

cryptographic primitives being developed to

counteract emerging threats, such as those posed

by quantum computing. CryptoVerif stands out

in this respect, as it is specifically designed to

prove cryptographic security under

computational assumptions, which align more

closely with practical cryptography and real-

world implementations. This makes CryptoVerif

well-positioned to handle future cryptographic

developments, including post-quantum

cryptography. ProVerif also continues to evolve

by extending its support for more sophisticated

cryptographic operations, such as algebraic

properties and stateful protocols, while

Tamarin’s support for Diffie-Hellman

exponentiation and bilinear pairings ensures that

it can handle increasingly complex cryptographic

scenarios. Scyther, while effective, remains more

suited for standard cryptographic verification

tasks and may not be as flexible in handling

emerging cryptographic developments.

Enhancing User Experience and Accessibility

User experience and accessibility are crucial

factors for the wider adoption of security

verification tools, especially as they are

increasingly used by non-experts, such as

engineers or students, in addition to researchers.

Scyther is often lauded for its user-friendly

interface and intuitive design, making it

particularly well-suited for beginners and

educational purposes. However, more advanced

users may find it lacking in features required for

complex analyses. Tamarin, while more

powerful in terms of capabilities, has a steeper

learning curve, which could deter new users, but

its interactive proof construction appeals to

experienced users who require precise control

over the verification process. ProVerif strikes a

balance by offering automated verification

while maintaining flexibility for those familiar

with formal methods. CryptoVerif, on the other

hand, is highly flexible but can be daunting for

beginners due to its focus on computational

proofs and the need for cryptographic expertise.

Leveraging Cloud and Distributed Computing

With the shift toward cloud computing and

distributed systems, the need for tools that can

verify security protocols across distributed

environments is increasing. Tamarin excels in

this area, with its support for modeling complex

distributed systems, such as multi-party

protocols and stateful systems that are prevalent

in cloud infrastructures. ProVerif and

CryptoVerif also show promise in adapting to

cloud environments. For instance, ProVerif's

ability to handle infinite state spaces makes it

useful for protocols in large, distributed

networks, while CryptoVerif’s focus on

computational security allows it to verify the

resilience of cryptographic systems in the cloud.

Scyther, while efficient in traditional setups,

may need more refinement to handle the

growing complexity of cloud-based

environments.

Specialization for IoT and Emerging Networks

The rise of Internet of Things (IoT) devices

and emerging networks like 5G requires tools

that can verify protocols designed for low-

power, resource-constrained devices. In this

context, Tamarin stands out, as it has been

successfully applied to protocols in 5G and

similar networks, where security needs are

paramount, and the network's complexity is

vast. Scyther can efficiently verify simpler IoT

protocols but lacks the advanced features

required for comprehensive IoT network

analysis. ProVerif and CryptoVerif also provide

useful insights, particularly for ensuring

confidentiality and authentication in IoT

communication protocols. As IoT networks

grow in scale and importance, these tools will

need to continue evolving to address the unique

challenges they present, such as lightweight

cryptography and low-latency communication.

Interoperability and Collaboration

Interoperability between different

verification tools is becoming more important

as the complexity of protocols increases, and

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 75

multiple verification paradigms are needed for

comprehensive security analysis. While Scyther

and Tamarin offer standalone solutions, they

don’t yet have strong capabilities for integration

with other tools. ProVerif, on the other hand,

has been adapted into other verification

environments and frameworks, making it highly

interoperable. CryptoVerif has also taken steps

toward integration with EasyCrypt via the

CV2EC translation tool, enabling users to verify

cryptographic primitives in EasyCrypt after

verifying protocols in CryptoVerif.

Collaborative environments are essential for

tackling modern, multifaceted security

challenges, as no single tool may suffice for

complex, real-world scenarios.

Addressing New Security Threats

The security landscape is continuously

evolving, with new threats such as side-channel

attacks, zero-day exploits, and the rise of post-

quantum cryptographic attacks. CryptoVerif is

particularly well-suited to address these new

challenges due to its grounding in the

computational model, which allows it to verify

cryptographic protocols under real-world

conditions. ProVerif continues to adapt by

adding support for new types of security

properties, though its reliance on the symbolic

model means it may miss certain real-world

vulnerabilities. Tamarin’s ability to model

complex adversary behaviors and dynamic

corruption makes it particularly effective at

discovering novel attacks, especially in cutting-

edge technologies like 5G and blockchain.

Scyther, while highly efficient for standard

security analysis, is more limited in addressing

these emerging threats.

Fostering Community and Open-Source

Development

Open-source development and community

support are critical for the continued

improvement and adoption of security

verification tools. Scyther, Tamarin, ProVerif,

and CryptoVerif all benefit from strong

community involvement and active

development. Tamarin has seen significant

contributions from the research community,

which has helped it stay on the cutting edge of

security protocol verification. ProVerif and

CryptoVerif are both widely used in academic

research, and their open-source nature ensures

that they continue to evolve with the latest

advancements in cryptographic theory and

protocol design. Scyther’s GitHub presence

and active development make it a popular

choice for educational purposes, though its

development may not be as rapid as that of

more complex tools.

Educational Initiatives

Educational initiatives play a vital role in

fostering the next generation of security

professionals. Scyther stands out for its ease of

use and intuitive interface, making it an

excellent teaching tool for students who are new

to the field of security protocol analysis. Its

straightforward setup allows students to focus

on learning the core concepts without being

overwhelmed by complex features. Tamarin and

ProVerif, while more advanced, offer extensive

tutorials and resources that cater to more

experienced users or graduate-level students

who are looking to deepen their understanding

of formal verification methods. CryptoVerif,

though challenging for beginners, is often

included in advanced cryptography courses,

where students can gain experience with

computational proofs and cryptographic

protocol verification.

Case study

In the context of Mobile Cloud Computing,

ensuring confidentiality and integrity between

the Mobile Device, Trusted Third Party (TTP),

and Verifier is crucial. These tools aid

researchers in protocol verification when

proposing a new protocol. For instance, in papers

[26], to develop a protocol suitable for the

context, we start with basic information and then

use tools to analyze and identify weaknesses,

errors, or unreasonable points. This process

continues until the desired value is achieved.

Scyther can be effectively used to assess the

Message Exchange Protocol, identifying

limitations or vulnerabilities that could lead to

potential attacks or failures. This understanding

Journal of Science and Technology on Information security

76 No 3.CS (23) 2024

enables the development of targeted solutions to

address these issues. The following example

outlines the message exchange process of a

simple protocol involving three parties.

Message Exchange Steps (Figure 10):

1. The Mobile Device sends an initial

attestation request to the Verifier, encrypted

with the Verifier’s public key and signed using

the Mobile Device’s private key.

2. The TTP forwards a nonce to the Verifier

to ensure freshness, encrypted with the

Verifier’s public key.

3. The Mobile Device sends verification

data back to the TTP, including hashes of

nonces and keys, encrypted and signed.

4. The Mobile Device sends attestation

information directly to the Verifier.

5. The TTP sends the attestation results to

the Verifier to confirm the results.

6. The Verifier confirms the verification

results back to the Mobile Device.

Figure 11 below illustrates how Scyther

presents the message exchange process,

revealing the outcomes shown in Figure 12. Due

to the basic design, the protocol appears

susceptible to potential vulnerabilities. This

figure clearly highlights the protocol's

weaknesses, allowing developers to identify and

address each error at various steps. Through this

process, we can pinpoint current weaknesses in

the protocol and propose solutions that align

with the security requirements. This enables us

to propose appropriate solutions to upgrade and

refine the protocol.

For example, the main drawback of Step 1

in this message exchange protocol lies in its

lack of strong integrity verification and replay

attack prevention measures. Specifically, in

Step 1, the Mobile Device sends an initial

attestation request to the Verifier, which is

encrypted using the Verifier's public key

(pk(Verifier)) and signed with the Mobile

Device's private key (sk(MobileDevice)).

Although signing the message provides

authenticity of the source (proving that the

message came from the Mobile Device) and

encryption provides confidentiality, the

protocol lacks additional context-binding

information to ensure that this request cannot

be used out of its intended context. An attacker

who intercepts this message could potentially

replay it to disrupt the protocol or attempt to

forge communications with the Verifier later.

This weakness could lead to the Mobile Device

unknowingly being part of a replay attack.

Furthermore, there is no mention of

timestamps, sequence numbers, or session

identifiers, which are critical for ensuring that

the messages cannot be reused by a malicious

party at a different time. This makes the

protocol vulnerable to replay attacks and

context misuse. We addressed this drawback

by incorporating an ephemeral key

(EphemeralKeyM) alongside the signed

NonceM. This key serves as an additional

freshness factor and binding to the current

session, reducing the effectiveness of replay

attacks by making it more difficult for an

attacker to reuse the captured message in a

meaningful way. Additionally, having the

Mobile Device sign the NonceM and other

session-related information further strengthens

the integrity of the request, ensuring that the

Verifier can validate the origin and guarantee

that the request has not been modified in

transit. These measures significantly enhance

the security of Step 1 against replay and

impersonation attacks. (Figure 13). This

enhancement provides protection against

replay and impersonation attacks by

confirming the authenticity of the sender and

the integrity of the message. Figure 14 presents

the result of proposed solution, which can

improve the protocol to avoid several attacks.

Finally, the Figure 15 demonstrates the

alternative message exchange based on the

proposed solution.

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 77

Figure 10. Message exchange

Figure 11. Scyther for ensuring confidentiality and integrity between Mobile Device, TTP, and Verifie

Figure 12. Result of verification

Journal of Science and Technology on Information security

78 No 3.CS (23) 2024

Figure 13. The revised Step 01 in Scyther

Figure 14. The result of proposed solution

Figure 15. The revised message exchange of proposed solution

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 79

Although no protocol is flawless, Scyther

significantly contributes to protocol improvement

by pinpointing weaknesses it detects, thereby

enhancing the protocol's robustness.

V. CONCLUSION

In conclusion, this paper provides a detailed

comparative analysis of four leading security

protocol verification tools, Scyther, Tamarin,

ProVerif, and CryptoVerif, and highlights their

strengths, limitations, and unique contributions

to the field. This work contributes to a deeper

understanding of how these tools can be

leveraged for different security challenges in

modern technological environments, such as

cloud computing, IoT, and 5G networks. A key

contribution of this paper is the comprehensive

comparison across critical dimensions like

protocol verification capabilities, cryptographic

support, user accessibility, and adaptability to

technological shifts. This analysis helps

researchers and practitioners make informed

decisions on which tool to use based on their

specific requirements, such as standard protocol

analysis, advanced cryptographic proofs, or

dynamic adversary modeling. Looking forward,

this paper outlines potential areas for future

work, such as the need for better interoperability

between verification tools, improved support for

post-quantum cryptography, and enhanced user

accessibility to make these powerful tools more

approachable for non-experts. The rapid growth

in distributed systems and IoT also suggests a

growing need for specialized tools capable of

handling the complex security demands of these

environments. This work contributes to the

growing body of knowledge in security protocol

verification, providing valuable insights that can

guide future research and tool development. By

addressing the gaps in current tools and

suggesting directions for their evolution, this

paper fosters a more secure and robust approach

to the verification of security protocols in an

ever-changing digital landscape.

ACKNOWLEDGEMENT

We acknowledge the support of time and

facilities from Ho Chi Minh City University of

Technology and Education for this study.

REFERENCES

[1] M. A. Fikri, K. Ramli, and D. Sudiana, “Formal

Verification of the Authentication and Voice

Communication Protocol Security on Device X

Using Scyther Tool,” IOP Conf. Ser. Mater. Sci.

Eng., vol. 1077, no. 1, p. 012057, Feb. 2021. doi:

10.1088/1757-899X/1077/1/012057.

[2] N. Dalal, J. Shah, K. Hisaria, and D. Jinwala, “A

Comparative Analysis of Tools for Verification

of Security Protocols,” Int. J. Commun. Netw.

Syst. Sci., vol. 03, no. 10, pp. 779–787, 2010.

doi: 10.4236/ijcns.2010.310104.

[3] H. A. Elbaz, M. H. Abd-elaziz, and T. M.

Nazmy, “Analysis and Verification of a Key

Agreement Protocol over Cloud Computing

Using Scyther Tool,” vol. 2, no. 2, 2014.

[4] L. Chen and C. Kudla, “Identity based

authenticated key agreement protocols from

pairings,” in 16th IEEE Computer Security

Foundations Workshop, 2003. Proceedings.,

Pacific Grove, CA, USA: IEEE Comput. Soc,

2003, pp. 219–233. doi:

10.1109/CSFW.2003.1212715.

[5] Y. Yang, H. Yuan, L. Yan, and Y. Ruan, “Post‐

quantum identity‐based authenticated multiple

key agreement protocol,” ETRI J., vol. 45, no. 6,

pp. 1090–1102, Dec. 2023, doi:

10.4218/etrij.2022-0320.

[6] C. J. Cremers, “The Scyther Tool: Verification,

falsification, and analysis of security protocols,”

in International Conference on Computer Aided

Verification, Springer, 2008, pp. 414–418.

Accessed: Nov. 04, 2016. Available:

http://link.springer.com/chapter/10.1007/978-3-

540-70545-1_38.

[7] C. J. F. Cremers, “Unbounded verification,

falsification, and characterization of security

protocols by pattern refinement,” in

Proceedings of the 15th ACM conference on

Computer and communications security,

Alexandria Virginia USA: ACM, Oct. 2008, pp.

119–128. doi: 10.1145/1455770.1455787.

[8] C. Xi and L. Siqi, “Research on semantics and

algorithm of formal analysis tool Scyther,” in

2022 IEEE 4th International Conference on

Civil Aviation Safety and Information

Technology (ICCASIT), Dali, China: IEEE, Oct.

2022, pp. 1058–1074.doi:

10.1109/ICCASIT55263.2022.9987170.

Journal of Science and Technology on Information security

80 No 3.CS (23) 2024

[9] X. Zhang, Y. Zhu, C. Gu, and X. Miao, “A

Formal Verification Method for Security

Protocol Implementations Based on Model

Learning and Tamarin,” J. Phys. Conf. Ser., vol.

1871, no. 1, pp. 012102, Apr. 2021, doi:

10.1088/1742-6596/1871/1/012102.

[10] S. Meier, B. Schmidt, C. Cremers, and D. Basin,

“The TAMARIN Prover for the Symbolic

Analysis of Security Protocols,” in Computer

Aided Verification, vol. 8044, N. Sharygina and

H. Veith, Eds., in Lecture Notes in Computer

Science, vol. 8044, Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 696–701. doi:

10.1007/978-3-642-39799-8_48.

[11] Y. Xiong, C. Su, W. Huang, F. Miao, W. Wang,

and H. Ouyang, “Verifying Security Protocols

using Dynamic Strategies,” Aug. 25, 2019,

arXiv: arXiv:1807.00669. A Jan. 18, 2024.

Available: http://arxiv.org/abs/1807.00669.

[12] D. Basin, C. Cremers, J. Dreier, and R. Sasse,

“Tamarin: Verification of Large-Scale, Real-

World, Cryptographic Protocols,” IEEE Secur.

Priv., vol. 20, no. 3, pp. 24–32, May 2022, doi:

10.1109/MSEC.2022.3154689.

[13] P.V. Hau and D. T. T. Hien, “Enhancing Web

Application Security: A Deep Learning and

NLP-based Approach for Accurate Attack

Detection” in Journal of Science and

Technology on Information Security, vol. 3, no.

20, pp. 77-87, December 2023. doi:

https://doi.org/10.54654/isj.v3i20.1008.

[14] B. Blanchet, “The Security Protocol Verifier

ProVerif and its Horn Clause Resolution

Algorithm,” Electron. Proc. Theor. Comput.

Sci., vol. 373, pp. 14–22, Nov. 2022, doi:

10.4204/EPTCS.373.2.

[15] J. Yao, C. Xu, D. Li, S. Lin, and X. Cao,

“Formal Verification of Security Protocols:

ProVerif and Extensions,” in Artificial

Intelligence and Security, vol. 13339, X. Sun, X.

Zhang, Z. Xia, and E. Bertino, Eds., in Lecture

Notes in Computer Science, vol. 13339, pp.

500–512, Cham: Springer International

Publishing, 2022. doi: 10.1007/978-3-031-

06788-4_42.

[16] E.-Y. Yap, J.-J. Chin, and A. Goh, “Verifying

MQV-Based Protocols Using ProVerif,” in IT

Convergence and Security, vol. 782, H. Kim and

K. J. Kim, Eds., in Lecture Notes in Electrical

Engineering, vol. 782, pp. 55–63, Singapore:

Springer Singapore, 2021. doi: 10.1007/978-

981-16-4118-3_6.

[17] M. Abadi, B. Blanchet, and C. Fournet, “The

Applied Pi Calculus: Mobile Values, New

Names, and Secure Communication,” 2016,

arXiv. doi: 10.48550/ARXIV.1609.03003.

[18] B. Blanchet and B. Smyth, “Automated

Reasoning for Equivalences in the Applied Pi

Calculus with Barriers,” in 2016 IEEE 29th

Computer Security Foundations Symposium

(CSF), Lisbon: IEEE, pp. 310–324, Jun. 2016.

doi: 10.1109/CSF.2016.29.

[19] B. Blanchet, “CryptoVerif: a Computationally-

Sound Security Protocol Verifier (Initial

Version with Communications on Channels),”

2023, arXiv. doi:

10.48550/ARXIV.2310.14658.

[20] K. Cohn-Gordon, C. Cremers, B. Dowling, L.

Garratt, and D. Stebila, “A Formal Security

Analysis of the Signal Messaging Protocol,” J.

Cryptol., vol. 33, no. 4, pp. 1914–1983, Oct.

2020. doi: 10.1007/s00145-020-09360-1.

[21] K. Bhargavan, B. Blanchet, and N. Kobeissi,

“Verified Models and Reference

Implementations for the TLS 1.3 Standard

Candidate,” in 2017 IEEE Symposium on

Security and Privacy (SP), San Jose, CA, USA:

IEEE, pp. 483–502, May 2017, doi:

10.1109/SP.2017.26.

[22] B. Blanchet, "Dealing with Dynamic Key

Compromise in Crypto Verif," in 2024 IEEE

37th Computer Security Foundations

Symposium (CSF), Enschede, Netherlands, pp.

495-510 2024.

doi:10.1109/CSF61375.2024.00015.

[23] B. Lipp, B. Blanchet, and K. Bhargavan, “A

Mechanised Cryptographic Proof of the

WireGuard Virtual Private Network Protocol,”

in 2019 IEEE European Symposium on Security

and Privacy (EuroS&P), Stockholm, Sweden:

IEEE, Jun. 2019, pp. 231–246. doi:

10.1109/EuroSP.2019.00026.

[24] B. Blanchet, P. Boutry, C. Doczkal, B. Grégoire

and P. -Y. Strub, "CV2EC: Getting the Best of

Both Worlds," 2024 IEEE 37th Computer

Security Foundations Symposium (CSF),

Enschede, Netherlands, pp. 279-294, 2024, doi:

10.1109/CSF61375.2024.00019.

[25] T. M. C. Le, X. T. Pham, and V. T. Le,

“Advancing Security Protocol Verification: A

Journal of Science and Technology on Information security

 No 2.CS (22) 2024 81

Comparative Study of Scyther, Tamarin”

in Journal of Technical Education Science, vol.

19, no. 1, pp. 43–53, Feb. 2024. doi:

10.54644/jte.2024.1523.

[26] T. L. Vinh, H. Cagnon, S. Bouzefrane, and S.

Banerjee, “Property-based token attestation in

mobile computing: Property-based token

attestation in mobile computing,” in Concurr.

Comput. Pract. Exp., pp. e4350, Oct. 2017. doi:

10.1002/cpe.4350.

ABOUT THE AUTHOR

Le Vinh Thinh

Workplace: Ho Chi Minh City

University of Technology and

Education (HCMUTE)

Email: thinhlv@hcmute.edu.vn

Education: After completing a

B.Sc. at the University of Natural

Sciences, Le Vinh Thinh obtained a

Master’s degree in IT at the U.P. Technology University

in India in 2006 and completed a Ph.D. in Computer

Science at the Conservatoire National des Arts et

Métiers (CNAM), Paris, France, in 2017. Currently, he

is a faculty member in the Department of Information

Technology at Ho Chi Minh City University of

Technology and Education, Vietnam. He is the author

and co-author of over 20 scientific articles.

Recent research direction: Trust and Reputation

Systems, Security, Mobile Cloud Computing, and the

Internet of Things (IoT) based AI.

Lê Vĩnh Thịnh

Nơi làm việc: Trường Đại học Sư phạm Kỹ thuật Thành

phố Hồ Chí Minh (HCMUTE)

Email: thinhlv@hcmute.edu.vn

Học vấn: Sau khi hoàn thành bằng Cử nhân tại Trường

Đại học Khoa học Tự nhiên, Lê Vĩnh Thịnh đã nhận

bằng Thạc sĩ CNTT tại Đại học Công nghệ U.P ở Ấn Độ

vào năm 2006 và hoàn thành Tiến sĩ Khoa học Máy tính

tại Conservatoire National des Arts et Métiers (CNAM),

Paris, Pháp, vào năm 2017. Hiện tại, đang là giảng viên

tại Khoa Công nghệ Thông tin, Trường Đại học Sư phạm

Kỹ thuật Thành phố Hồ Chí Minh, Việt Nam. Là tác giả

và đồng tác giả của hơn 20 bài báo khoa học.

Hướng nghiên cứu gần đây: Hệ thống tin cậy và danh

tiếng, bảo mật, điện toán đám mây di động và AI dựa

trên Internet vạn vật.

