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Abstract— The exploration of maximal
distance separable codes (MDS codes) has been a
longstanding focus in error-correcting code
theory and holds significant relevance in
cryptography. Numerous approaches have been
investigated for constructing MDS matrices,
including deriving them from MDS codes,
utilizing Hadamard matrices, Cauchy matrices,
Vandermonde matrices, circulant matrices,
circulant-like matrices, among others. However, a
major challenge for cryptography designers is
finding MDS matrices with low implementation
cost. In this paper, we propose algorithms for
generating efficient circulant-like MDS matrices
of size 4x4, and 8 x 8 for implementation.
Subsequently, we evaluate the fixed points, the
number of XOR operations of the proposed MDS
matrices, and compare them with MDS matrices
of other well-known ciphers. These proposed
MDS matrices can become promising candidates
for many cryptographic algorithms in the future.

T6m tit— Viée sir dung cic ma tach c6 khoang
cach cyc dai (ma MDS) da 1a mot trgng tim lau
dai trong ly thuyét ma sira sai va cé y nghia quan
trong trong mit ma hoc. Nhiéu phwong phap da
dwgc nghién ciru dé xiy dung cic ma trin MDS,
bao gdm viéc xdy dung tir ma MDS, sir dung cic
ma trin Hadamard, ma trin Cauchy, ma trin
Vandermonde, ma tran dich vong, ma trian tua
vong va nhirng phwong phap khac. Tuy nhién, mot
thach thirc 16n dbi véi cac nha thiét ké mat ma la
tim ra ciac ma tran MDS c6 chi phi thuc thi thip.
Trong bai b4o nay, nhém tac gia dé xuét céc thuat
toan dé tao ra cac ma tran MDS twa vong hiéu qua
cho thuc thi co 4 X 4 va 8 x 8. Sau dé sé danh gia
s6 diém bat dong, s6 phép XOR ciia cic ma trin
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MDS dwgc dé xuit va so sanh chiing véi cac ma
tran MDS ciia cdc mé ndi tiéng khac. Nhitng ma
tran MDS dwoc dé xuét nay cé thé tré thanh
nhitng Wng vién tiém ning cho nhiéu thuit toin
mit ma trong tuong lai.
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l. INTRODUCTION

MDS matrices [1, 2] play a crucial role in
various areas of mathematics and computer
science, particularly in the field of error-
correcting codes and cryptography. In the realm
of cryptography, MDS matrices find
applications in the design of block ciphers [4, 5]
and hash functions [6, 7]. These matrices are
employed in the diffusion layer of block
ciphers, contributing to the spread and mixing
of input data to enhance security against various
cryptographic  attacks. The study and
development of MDS matrices remain an active
area of research, with implications for
enhancing the reliability and security of
communication systems, data storage, and
information transmission in various
technological domains.

Researchers  continually  explore  novel
methods for generating efficient MDS matrices
with lower implementation costs to improve the
performance and security of cryptographic
algorithms. Currently, there are several commonly
used methods for constructing MDS matrices,
such as Hadamard matrices [8, 9], Vandermonde
matrices [10], Cauchy matrices [11, 12], recursive
MDS matrices [13, 14], Circulant matrices [15-
18], circulant-like matrix [2, 19, 20].

The methods constructed from Hadamard
[28] matrices are of significant interest because
these matrices have the advantage of having
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some distinct elements in the matrix, small
equal to the size of the matrix. On the other
hand, they can be self-inverse, making them
highly advantageous for implementation. With
construction methods based on Cauchy and
Vandermonde matrices, their advantage lies in
the ability to build large-sized MDS matrices.
However, the elements in these matrices often

have high Hamming weights, leading to
increased implementation costs. Recursive
matrices have the advantage of saving

implementation costs in hardware as they can
utilize very sparse companion matrices.

Matrices  with  properties  resembling
circulants and circulant-like were initially
introduced by P. Junod and colleagues in their
publication presented at the Selected Areas in
Cryptography (SAC) conference in 2004 [2].
Circulant matrices and circulant-like matrices
have the advantage of having a small number of
distinct elements and can potentially contain a
large number of ones, making them effective in
implementation.

In [15], the researchers introduced effective
circulant MDS matrices tailored for lightweight
cryptography.  They  delved into the
advantageous and intriguing characteristics of
circulant matrices following the structure B* =
1. Regrettably, certain findings in [15] proved to
be inaccurate, notably the suggested efficient
circulant matrices with a size of 8, which were
not MDS matrices. In [16], the authors provided
a fresh algebraic demonstration outlining the
absence of circulant involutory MDS matrices
when working within fields of characteristic 2.
For characteristics of an odd nature, they
delineated parameters that might allow for
potential existence. By extending the notion
from circulance to 6-circulance, the limitations
on the existence of 0-circulant involutory MDS
matrices were eliminated, even within fields of
characteristic 2. Ultimately, they expanded the
definition of involutory and introduced a novel
direct approach to constructing nearly
involutory 6-circulant MDS matrices. In [17],
the researchers calculated the reciprocal of
circulant matrices with dimensions 2" x 2",
where the entries belong to the GF(2™), and

this holds true for cases where n > 3. The
computational process initiates with a software
application that produces the cofactors of an
8 x 8 circulant matrix. Building upon these
findings, the recursive construction of a
circulant matrix’s inverse becomes feasible. In
[18], the researchers established the absence of
specific orthogonal circulant MDS matrices.
Following this, they provided a condition that is
both necessary and sufficient for orthogonal 6-
circulant matrices, employing g-polynomial
rings. Furthermore, they delved into the
exploration of orthogonal circulant MDS
matrices across Galois rings.

In [19], the researchers introduced effective
MDS matrices with a circulant-like structure in
both 4x4 and 8 x8 dimensions. They
referred to these matrices as Type-I circulant-
like matrices. They demonstrated that
circulant-like MDS matrices of size X1
cannot possess involution or orthogonality
properties, which are advantageous for
designing SPN  networks. Despite the
efficiency of these matrices, there is no
guarantee that their inverses will also be
efficient. The authors investigated the creation
of 2lx2l involutory MDS matrices,
commencing with a [ x 1 submatrix that is
itself an MDS matrix. They regarded the [ x [
submatrix as circulant MDS matrices. They
presented proof indicating the absence of
circulant-like MDS matrices of size 2l x 21
when [ is an even number. In [20], a novel
category of matrices resembling circulants was
introduced by the authors. These matrices
possess involutory characteristics by design,
denoted as Type-Il circulant-like matrices.
Their investigation delved into the MDS
attributes of [ x [ circulant matrices, as well as
Type-1 and Type-Il circulant-like matrices,
leading to the development of new, efficient
MDS matrices tailored for lightweight
cryptography, particularly when [ is limited to
8. Additionally, the study encompassed the
exploration of orthogonal and involutory
features of such matrices, aiming to create
MDS matrices with both efficient computation
and inverse properties. The authors also
examined the compelling properties of
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circulant matrices, Type-l, and Type-lI
circulant-like matrices, unveiling insights
applicable  across  diverse realms  of

mathematics and computer science.

Unfortunately, when we examined the
proposed Type-I circulant-like MDS matrices
of size 4x4 and 8 x8 in [19, 20], these
matrices did not satisfy the conditions of being
MDS matrices.

MDS matrices [27, 29, 30] with maximum
branches [21, 22] enable them to achieve
maximum diffusion capability. Additionally, the
number of fixed points [23] is also a crucial
criterion for MDS matrices as it can impact the
security of future cryptographic algorithms. The
aforementioned works propose the construction
of circulant or circulant-like matrices; however,
they have not addressed the matrices’ fixed
point counts.

In this paper, we propose algorithms for
generating efficient circulant-like MDS matrices of
sizz 4x4 and 8x8 for implementation.
Subsequently, we evaluate the fixed points, and the
number of XOR operations of the proposed MDS
matrices, and compare them with MDS matrices of
other well-known ciphers. These proposed MDS
matrices can become promising candidates for
many cryptographic algorithms in the future.

The structure of the paper is outlined as
follows. Section 2 provides the preliminaries.
Section 3 introduces algorithms for producing
effective circulant-like MDS matrices for
practical use. The experimental outcomes and
comparative analyses are detailed in Section 4.
Finally, Section 5 encapsulates the conclusions.

Il. PRELIMINARIES
A. Circulant-like MDS matrix

The MDS matrices are derived from the
principles of error correction codes [24],
specifically using codes with maximal distance
separable or MDS properties. Observing the
MDS matrix reveals its unique nature,
characterized by the property that every square
sub-matrix is invertible.

Definition 1 [24]. A matrix is an MDS matrix
if and only if every sub-matrix is non-singular.
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Circulant and Type-I circulant-like matrices
are defined as follows.

Definition 2 [26]. The matrix of size n X n
represented as

by by bn-q
bn—l bO bn—z
b1 b2 bo

is termed a circulant matrix and denoted as
Circ(bg, .-, bp_1)-

Definition 3. (Type-I circulant-like Matrix)
[2,19].

The matrix of size m X m:

[+ 5]
17 B
is referred to as a Type-I circulant-like matrix,
where B = Circ(1,by, ...,bym_3), 1= (1,..,1)

~——————
m—1 times

, 1 represents the unit element, and b;’s and b
are any nonzero elements of the underlying
field other than 1.

Example. Choosing b=02, B-=
Circ(02,01,03), we have a Type-I circulant-
like matrix of size 4 as follows.

Selecting b =02, and B =
Circ(02,01,03), results in the creation of a
4 x 4 Type-I circulant-like matrix.

02 01 01 o01
01 02 01 03

01 03 02 01
01 01 03 02

A circulant-like matrix that satisfies the
MDS condition is referred to as a circulant-like
MDS matrix.

B. Introduction to Fixed Points and XOR
Operations

B =

A fixed point [23] of a linear transformation
T: GF(29)™ — GF(29)™ with the representation
non-singular  matrix B = [b; j]uxm  OVer
GF (29) is the vector X satisfies: B.X = X. This
means that when X undergoes the linear
transformation T, it remains unchanged, without
any alteration.
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There is no diffusion at the fixed points
because the linear layer does not affect these
input blocks. Therefore, an attacker can exploit
this vulnerability to easily conduct a
straightforward plaintext attack. In practice,
the expected number of fixed points for a
linear transformation is 1 since B.0 =0
always holds.

It can be observed that the number of XOR
operations is a simple and manageable metric.
However, the coefficients of MDS matrices are
often chosen to have a small number of XOR
operations, for instance, with low Hamming
weight. As highlighted in [25], a small number
of XOR operations significantly reduces
hardware area. On the other hand, when MDS
matrices have a small number of XOR
operations, it also enhances the software
execution speed.

Definition 4. The XOR count of an element
a in the field GF(29)/g(X) is the number of
XOR operations required to perform the
multiplication of a with any given element £ in

GF(29)/9(X).

I111. PROPOSING ALGORITHMS FOR EFFICIENT
GENERATION OF TYPE-I CIRCULANT-LIKE
MATRICES FOR IMPLEMENTATION

In this section, we present two algorithms
for the efficient generation of Type-I circulant-
like MDS matrices for implementation, with
sizes 4 x 4 and 8 x 8.

We select the elements of these matrices
from the sets {0x01,..,0x07} and
{0x01, ... ,0x09} because these elements have
low Hamming weight and they have a lower
number of XOR operations compared to other
elements in the field GF(28), resulting in low
implementation costs. Therefore, this contributes
to making the XOR operations of the obtained
matrices small.

Consider a Type-I circulant-like matrix of
size 4 X 4 in the following form.

m, 01 01 01
01 01 my m,
01 m, 01 my (1)
01 m m, 01

where m,, m;, m, € {0x01, ... ,0x07}

Algorithm 1. Generate efficient 4 x 4 Type-
I circulant-like matrices for implementation

Input: An empty 4 x4 matrix M over
GF(2®); Set J consists of a list of elements in
the form (my,, my,m,), J = 0.

Output: Efficiently implementable Type-I
circulant-like MDS matrices of size 4 x 4 with
elements from GF(28).

Step 1. Generate matrix M in the form of a
Type-I circulant-like matrix as shown in (1) with
3 symbolic elements m; € GF(28),0 <i < 2.

Step 2: Choose a combination of three
elements (m,, m;, m,) for m; €
{0x01, ... ,0x07} (0 <i < 2).

Step 3: In case the tuple (m,, m,, m,) is not
part of 7, then:

- Fill in these elements into matrix M.
- Check if the obtained matrix M is MDS.

+ If this statement holds, store the matrix M
in the file and add this tuple (im,, m;, m,) to J.

Step 4: If |J| < 343, return to Step 2.

Return: File of Type-I circulant-like MDS
matrices of size 4 x 4 with elements in set
{0x01, ... ,0x07}.

Remark 1. Algorithm 1 is executed when all
possibilities of (my,my;,m,) for m;€
{0x01, ... ,0x07}, (0<i<2) have been
exhausted. In this case, the number of Type-I
circulant-like matrices to be checked is 343.

Note that the MDS property of the matrices
in Algorithm 1 and Algorithm 2 is verified
according to Definition 1. We developed a
custom program to check whether all
submatrices of any given input matrix have non-
zero determinants.

For Type-l circulant-like matrices of size
8 x 8, to find efficient matrices for execution
with many 1’s, we examine these matrices as
follows:
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my 01 01 o1 01 01 01 01
01 01 ™M1 m, mzg my Ms Mg
01 Mg 01 my mpy mz My Mg
01 ms mg 01 My M, mzg My
01 my mg mg 01 my Mz my @)
01 M3 my ms mg 01 M1 my,
01 my mz my ms mg 01 my
01 my my; mz my Mms mg 01

Where my, my, ..., mg € {0x01, ... ,0x09}.

Algorithm 2. Generate efficient 8 x 8 Type-
I circulant-like matrices for implementation

Input: An empty matrix M of size 8 x 8
over GF(28); Set J consisting of a list of tuples
(mo, ml, ...,m6), (_7 = @.

Output: Efficiently implementable Type-I
circulant-like MDS matrices of size 8 x 8 with
elements from GF(28).

Step 1: Generate matrix M in the form of a
Type-I circulant-like matrix as shown in (2)
with 7 symbolic elements m; € GF(28),0 <
i<6.

Step 2: Choose a combination of seven
elements (mgy, my, ..., mg) for m; €
{0x01, ... ,0x09} (0 < i < 6).

Step 3: In case the tuple (my, my, ..., myg) is
not part of J, then:

- Fill in these elements into matrix M.
- Check if the obtained matrix M is MDS.

+ If this statement holds, store the matrix
M in the file and add this tuple
(mg, my, ..., mg) t0 J.

Step 4: If |J| < 4,782,969, return to Step 2.

Return: File of Type-I circulant-like MDS
matrices of size 8 x 8 with elements in set
{0x01, ... ,0x09}.

Remark 2. Algorithm 2 is executed when all
possibilities of (mgy,my,..,mg) for m; €
{0x01, ... ,0x09}, (0<i<6) have been
exhausted. In this case, the number of Type-I
circulant-like matrices to be checked is
4,782,969.

The experimental section is presented in
Section 4.
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1V. EXPERIMENT AND COMPARISON

Conducting experiments with Algorithm 1
and Algorithm 2 with C using a computer
configured as follows: VivoBook ASUSLaptop
X513EP_X515EP (Core i5-10210U, 8GB
RAM).

For Algorithm 1, the input data is an empty
4 % 4 Type-I circulant-like matrix over the field
GF(28) with the primitive polynomial x® +
x*+x3+x2+1.

For Algorithm 2, the input data is an empty
8 x 8 Type-I circulant-like matrix over the field
GF(28) with the primitive polynomial x® +
x*+x3 +x2+1.

For calculating the number of XOR
operations for the matrices, we based our
approach on Definition 4 and the method for
calculating the number of XOR operations
outlined in [25].

After experimenting to find a set of Type-I
circulant-like MDS matrices of size 4 x 4 from
Algorithm 1 and 8 x 8 matrices from Algorithm
2, we proceeded to calculate the fixed points of
these matrices. Then, we selected only those
matrices with exactly one fixed point.
Subsequently, we calculated the number of
XOR operations for each obtained matrix and
chose matrices with the minimum number of
XOR operations among them. The summarized
results are presented in Table 1.

After the experimental process, we obtained
two Type-I circulant-like MDS matrices of size
4 x 4 with a minimum XOR count of 147.
These matrices are presented in Table 2. For the
8 X 8 matrices, we obtained six Type-I
circulant-like MDS matrices with a minimum
XOR count of 948. These matrices are
presented in Table 3.
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OF EFFECTIVE TYPE-I CIRCULANT-LIKE
MDS MATRICES OBTAINED
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presents the comparison of 4 x4 MDS
matrices, while Table 5 compares their inverses.

Number | Number TABLE 2. TWO PROPOSED TYPE-I CIRCULANT-
f MDS f
Toal Nurtber oetrices | matices | LIKE MDS MATRICES OF SIZE 4X4 WITH THE
Type of . Run - with a with the
Mattrix slegﬁgri time ob'\t/|a||3r1sed fixed minimum MINIMUM XOR COUNT FOR THE PRIMITIVE
space matrices | _POIM | XOR | POLYNOMIAL X S+ Xt +X3+X%2+1
1
Numb
Circulant- 2 No Set Type-I Circulant-Like er of Nu(r)nfber
Iik_e 73 = 46 (with ) (my, mq, my) Matrix (4 X 4) Fi>_<ed XORs
matrices . Points
. 343 minutes 71 71 XOR
TS'Z: count = 4, =
x 02 01 01 01
_ 147) 1 (02,02,06) _lo1 01 02 06 20 147
Circulant- 6 =lo1 06 01 02
like o (with 01 02 06 01
matrices 97 = 102,2 XOR A=
ofsize | 4,782,969 | hours 24 24 count 02 0L 01 o1
Bx8 =948) 2 | (02,06,02) =[8% o1 06 8@] 20 147
From the results obtained in Table 2, we 01 06 0z 01

proceed to compare our proposed circulant-
likeMDS matrices of size 4 x4 with MDS
matrices from some well-known codes. Table 4

TABLE 3. SIX PROPOSED TYPE-I CIRCULANT-LIKE MDS MATRICES OF SIZE 8 X 8
WITH THE MINIMUM XOR COUNT FOR THE PRIMITIVE POLYNOMIAL X8 + X4 + X3 + X2 + 1

. . . Number of Number of
No. Set (my,mq, ..., m Type-I Circulant-Like Matrix (8 x 8 . .
(mo, my 6) yp ( ) Fixed Points | XORs
1| (2976324 2 L 20 948
1 {10134, 17 Circ(1,9,7,6,3,2,4)
2 1 o
2 (23.9.2746) 17 Circ(1,3,9,2,7,4,6) 2 948
2 1 o
3 | (2269437 17 Circ(1,2,6,9,43,7) 2 948
2 1 o
4 (2.7.3496.2) 17 Circ(1,7,3,4,9,6, 2)] 2 948
2 1 o
5 | (2647293 17 Circ(1,6,4,7,2,9, 3)] 2 948
2 1 0
6 | (2423679 17 Cire(1,4,2,3, 6,7,9)] z 948

TABLE 4. COPARISONS OF PROPOSED TYPE-I CIRCULANT-LIKE MATRICES
OF SIZE 4 X 4 WITH OTHER ONES

MDS matrices of size 4 x 4 (4)

Primitive polynomial | Number of Number of
Fixed Points | XORs

Circ[0xc4,0x65,0xc8,0x8b]
(Hierocrypt block cipher)

x4+ x+xS+x+1 20 448

Circ [0x2, 0x3, 0x1, 0x1]

x¥+xt+xd+x+1

EF 01 EF 5B
(Twofish block cipher)

(AES block cipher) 216 152
01 EF 5B 5B

5B EF EF 01

EF 5B 01 EF x4+ x4+ xS +x+1 20 444

They all not satisfy the conditions to be MDS matrices
for the primitive polynomial x8 + x7 + x® + x° + x* + x3 + 1

4 x 4 (Table 2)

Type-I circulant-like MDS matrices of size 4 x 4 in [19, 20] | in [19]
and the primitive polynomial x® + x* + x3 + x + 1
in [20]
Our two proposed Type-I circulant-like matrices of size
prop yp B +xt+x3+x2+1 20 147
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Looking at Table 4, it can be observed that
the two proposed Type-l circulant-like MDS
matrices of size 4 X 4 in Table 2 (matrices A,
and A,) have the smallest and best possible
number of fixed points, while the fixed-point
count of AES is 2, which is quite high and
may affect security. Additionally, the number

of XOR operations for our proposed matrices
is smaller compared to matrices from
Hierocrypt, AES, and Twofish when calculated
using the same method. Therefore, it can be
stated that our proposed 4 x 4 MDS matrices
are very promising.

TABLE 5. COMPARISON OF 4 X 4 INVERSE MDS MATRICES

Inverse MDS matrices of size 4 x 4 (A™1)

Primitive polynomial

Number
of XORs

Number of
Fixed Points

A~1 =Circ[0x82, 0xc4, 0x34, 0xf6],
Inverse of the matrix
Circ[0xc4,0x65,0xc8,0x8b]
(Hierocrypt block cipher)

+xt+xd+x+1 2°

520

A~! =Circ[0xe, 0xb, 0xd, 0x9],
Inverse of the matrix
Circ [0x2, 0x3, 0x1, 0x1]
(AES block cipher)

+xt+x+x+1 21°

440

63 7E 6B 92
D2 6B F5 D1
75 92 D1 FE
AB 63 D2 75

A=

Inverse of the matrix

01 EF 5B 5B
5B EF EF 01
EF 5B 01 EF
EF 01 EF 5B

(Twofish block cipher)

x4+ x+xS+x+1 20

535

98 0D 72 52
98 52 0D 72

Inverse of our proposed Type-I circulant-
like matrix A, of size 4 x 4

C2 98 98 98
A1 = l98 72 52 OD‘
, t=

xBHxt+ P+t +1 2°

502

98 52 72 0D
98 0D 52 72
Inverse of our proposed Type-I circulant-

like matrix A, of size 4 x 4

C2 98 98 098
A1 = [98 72 0D 52‘
, =

B+ xt+x3+x2+1 20

502

Through Table 5, it can be seen that the
inverses of our proposed matrices A, and A,
also have a very good fixed point count of 1.
Meanwhile, the inverse matrix of AES still has
a very large fixed point count of 2'°. In terms of
XOR operations, the inverses of our proposed
matrices A, and A, also have fewer XOR
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operations compared to matrices of Hierocrypt,
Twofish, and more than AES.

Recalling that in cryptography, MDS matrices
with a smaller fixed point count, ideally 1, are
considered better. Additionally, for efficient
execution and low execution cost, fewer XOR
operations in MDS matrices are preferable.
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From the above observations, it can be seen
that our two proposed Type-l circulant-like
MDS matrices of size 4 x4 are efficient
matrices suitable for execution and may serve as
candidates for various cryptographic algorithms.

Based on the results in Table 3, we proceed
to compare our proposed six Type-l circulant-

like MDS matrices of size 8 x 8 with MDS
matrices from some well-known cryptographic
schemes. Table 6 shows the comparison of the
8 x 8 MDS matrices, and Table 7 compares
their inverses.

TABLE 6. COMPARISON OF OUR 8%8 TYPE-I CIRCULANT-LIKE MATRICES
WITH MATRICES FROM WELL-KNOWN CIPHERS

Number
. . s . . Number
MDS matrices of size 8 x 8 (4) Primitive polynomial of Fixed
. of XORs
Points
Six proposed Type-1 circulant-like MDS matrices of | x8 + x* +x3 +x2+1 20 948
size 8 x 8 (in Table 3)
Circ[0x1, 0x1, Ox4, 0x1, 0x8, 0x5, 0x2, 0x9] B+xt+axd+x%2+1 20 840
(Whirlpool block cipher)
Circ[0x1, 0x1, 0x5, 0x1, 0x8, 0x6, 0x7, 0x4] B+xt+xd+x2+1 20 952
(Kalyna block cipher)
Type-I circulant-like MDS matrices of size 8 x 8 in[19, 20], | Do not satisfy the conditions to be MDS matrices

From Table 6, it can be observed that our
proposed 8 x 8 Type-l circulant-like matrices
share the same number of fixed points (1) as
matrices from Whirlpool and Kalyna. In terms

of XOR operations, our matrices have fewer
XOR operations (better performance) compared
to Kalyna and more than Whirlpool.

TABLE 7. COMPARISON OF 8 X 8 INVERSE MDS MATRICES

Inverse MDS matrices of size 8 x 8 (471)

Primitive polynomial

Number
of XORs

Number
of Fixed
Points

The inverses of the 6 Type-I circulant-like matrices of size

8 X 8 proposed by us in Table 3

rEl DE DE DE DE DE DE DEj
DE 5C 6A BC BE DF O0E 44
DE 44 5C 6A BC BE DF 0OE
DE OE 44 5C 6A BC BE DF
DE DF OE 44 5C 6A BC BE
DE BE DF O0E 44 5C 6A BC
DE BC BE DF O0E 44 5C 6A
\DE _6A BC BE DF (QE 44 5C!

xS +xt+xd+x2+1 20 2142

rEl DE DE DE DE DE DE DEj
DE 5C DF 6A OE BC 44 BE
DE BE 5C DF 6A OE BC 44
DE 44 BE 5C DF 6A OE BC
DE BC 44 BE 5C DF 6A OF
DE OE BC 44 BE 5C DF 64
DE 6A OE BC 44 BE 5C DF
\DE DF 6A OE BC 44 BE 5C!

B +xt+x3+x2+1 20 1986

rEl DE DE DE DE DE DE DEj
DE 5C OE BE 6A 44 DF BC
DE BC 5C OE BE 6A 44 DF
DE DF BC 5C OE BE 6A 44
DE 44 DF BC 5C OE BE 6A
DE 6A 44 DF BC 5C OE BE
DE BE 6A 44 DF BC 5C OE
LDE_OF BE 6A 44 DF BC 5CH

xS +xt+x3+x%+1 20 2017
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rEl DE DE DE DE DE DE DEj
DE 5C BC DF 44 6A BE OF
DE OE 5C BC DF 44 6A BE
DE BE OE 5C BC DF 44 6A
DE 6A BE OE 5C BC DF 44
DE 44 6A BE O0OE 5C BC DF
DE DF 44 6A BE O0E 5C BC

\DE_BC DF 44 6A BE (QE 5C!

x8+xt+x3+x2+1 20 1976

rEl DE DE DE DE DE DE DEj

DE DE BE 44 BC O0OE 6A DF
DE DF DE BE 44 BC O0OE 64
DE 6A DF DE BE 44 BC OF
DE OE 6A DF DE BE 44 BC

DE BC OE 6A DF DE BE 44
DE 44 BC OE 6A DF DE BE

\DE BE 44 BC 0OE 6A DF DE!

B +xt+x3+x2+1 20 1884

rEl DE DE DE DE DE DE DEj

DE DE 44 O0OE DF BE BC 6A
DE 6A DE 44 O0OE DF BE BC
DE BC 6A DE 44 O(OE DF BE
DE BE BC 6A DE 44 O0E DF

DE DF BE BC 6A DE 44 OF
DE OE DF BE BC 6A DE 44

\DE 44 OE DF BE BC 6A DE!

xB+xt+x3+x2+1 20 2127

A~1= Circ[0x4, Oxaf, Oxe, 0xa4, 0xc2, 0xc2, Oxch, 0x3e]
Inverse of the matrix
Circ[0x1, 0x1, 0x4, 0x1, 0x8, 0x5, 0x2, 0x9]
(Whirlpool Block cipher)

x8+xt+x3+x2+1 20 1792

A~1 = Circ[Oxad,0x95,0x76,0xa8,0x2f, 0x49, 0xd7, Oxca]
Inverse of the matrix
Circ[0x1, 0x1, 0x5, 0x1, 0x8, 0x6, 0x7, 0x4]
(Kalyna Block cipher)

x8+xt+x3+x2+1 20 2048

Through Table 7, it can be observed that the
inverses of our 6 matrices all have a fixed point
score of 1, matching the inverses of Whirlpool’s
matrix and Kalyna’s one. In terms of XOR
operations, our 6 matrices have a larger XOR
count compared to the inverse of the Whirlpool
matrix. However, they exhibit a lower XOR
count (better performance) compared to Kalyna.

Please note that in this paper, we focus
solely on proposing efficient circulant-like
MDS matrices of size 4 x 4, and 8 x 8 for
implementation. While we are capable of
handling larger matrices such as 16 X 16 or
32 x 32, such large MDS matrices are rarely
used in cryptography due to the significant
execution costs they impose on cryptographic
algorithms. On the other hand, for lightweight
applications, smaller MDS matrices are more
desirable to reduce execution costs.

V. CONCLUSION

A significant  obstacle  faced by
cryptographic designers involves discovering
MDS matrices with a minimal implementation
cost. Researching the construction of MDS
matrices based on circulant-like matrices is an
intriguing approach. In this article, we introduce
algorithms designed to produce effective
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circulant-like MDS matrices of size 4 x 4 and
8 x 8 suitable for practical application.
Following this, we assess the fix points and the
quantity of XOR operations associated with the
suggested MDS matrices. We then conduct a
comparative analysis with MDS matrices from
various renowned ciphers and the proposed
Type-I circulant-like MDS matrices in [19, 20].
Our proposed MDS matrices exhibit potential as
viable choices for numerous cryptographic
algorithms in the forthcoming years.
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