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Abstract— The exploration of maximal 

distance separable codes (MDS codes) has been a 

longstanding focus in error-correcting code 

theory and holds significant relevance in 

cryptography. Numerous approaches have been 

investigated for constructing MDS matrices, 

including deriving them from MDS codes, 

utilizing Hadamard matrices, Cauchy matrices, 

Vandermonde matrices, circulant matrices, 

circulant-like matrices, among others. However, a 

major challenge for cryptography designers is 

finding MDS matrices with low implementation 

cost. In this paper, we propose algorithms for 

generating efficient circulant-like MDS matrices 

of size 𝟒 × 𝟒, and 𝟖 × 𝟖 for implementation. 

Subsequently, we evaluate the fixed points, the 

number of XOR operations of the proposed MDS 

matrices, and compare them with MDS matrices 

of other well-known ciphers. These proposed 

MDS matrices can become promising candidates 

for many cryptographic algorithms in the future. 

Tóm tắt— Việc sử dụng các mã tách có khoảng 

cách cực đại (mã MDS) đã là một trọng tâm lâu 

dài trong lý thuyết mã sửa sai và có ý nghĩa quan 

trọng trong mật mã học. Nhiều phương pháp đã 

được nghiên cứu để xây dựng các ma trận MDS, 

bao gồm việc xây dựng từ mã MDS, sử dụng các 

ma trận Hadamard, ma trận Cauchy, ma trận 

Vandermonde, ma trận dịch vòng, ma trận tựa 

vòng và những phương pháp khác. Tuy nhiên, một 

thách thức lớn đối với các nhà thiết kế mật mã là 

tìm ra các ma trận MDS có chi phí thực thi thấp. 

Trong bài báo này, nhóm tác giả đề xuất các thuật 

toán để tạo ra các ma trận MDS tựa vòng hiệu quả 

cho thực thi cỡ 𝟒 × 𝟒 và 𝟖 × 𝟖. Sau đó sẽ đánh giá 

số điểm bất động, số phép XOR của các ma trận 

MDS được đề xuất và so sánh chúng với các ma 

trận MDS của các mã nổi tiếng khác. Những ma 

trận MDS được đề xuất này có thể trở thành 

những ứng viên tiềm năng cho nhiều thuật toán 

mật mã trong tương lai. 
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Từ khóa— các phần; định dạng; kiểu; chèn. 

I. INTRODUCTION

MDS matrices [1, 2] play a crucial role in 

various areas of mathematics and computer 

science, particularly in the field of error-

correcting codes and cryptography. In the realm 

of cryptography, MDS matrices find 

applications in the design of block ciphers [4, 5] 

and hash functions [6, 7]. These matrices are 

employed in the diffusion layer of block 

ciphers, contributing to the spread and mixing 

of input data to enhance security against various 

cryptographic attacks. The study and 

development of MDS matrices remain an active 

area of research, with implications for 

enhancing the reliability and security of 

communication systems, data storage, and 

information transmission in various 

technological domains. 

Researchers continually explore novel 

methods for generating efficient MDS matrices 

with lower implementation costs to improve the 

performance and security of cryptographic 

algorithms. Currently, there are several commonly 

used methods for constructing MDS matrices, 

such as Hadamard matrices [8, 9], Vandermonde 

matrices [10], Cauchy matrices  [11, 12], recursive 

MDS matrices [13, 14], Circulant matrices [15-

18], circulant-like matrix [2, 19, 20]. 

The methods constructed from Hadamard 

[28] matrices are of significant interest because

these matrices have the advantage of having
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some distinct elements in the matrix, small 

equal to the size of the matrix. On the other 

hand, they can be self-inverse, making them 

highly advantageous for implementation.  With 

construction methods based on Cauchy and 

Vandermonde matrices, their advantage lies in 

the ability to build large-sized MDS matrices. 

However, the elements in these matrices often 

have high Hamming weights, leading to 

increased implementation costs. Recursive 

matrices have the advantage of saving 

implementation costs in hardware as they can 

utilize very sparse companion matrices. 

Matrices with properties resembling 

circulants and circulant-like were initially 

introduced by P. Junod and colleagues in their 

publication presented at the Selected Areas in 

Cryptography (SAC) conference in 2004 [2]. 

Circulant matrices and circulant-like matrices 

have the advantage of having a small number of 

distinct elements and can potentially contain a 

large number of ones, making them effective in 

implementation. 

In [15], the researchers introduced effective 

circulant MDS matrices tailored for lightweight 

cryptography. They delved into the 

advantageous and intriguing characteristics of 

circulant matrices following the structure 𝐵𝑘 =
𝐼. Regrettably, certain findings in [15] proved to 

be inaccurate, notably the suggested efficient 

circulant matrices with a size of 8, which were 

not MDS matrices. In [16], the authors provided 

a fresh algebraic demonstration outlining the 

absence of circulant involutory MDS matrices 

when working within fields of characteristic 2. 

For characteristics of an odd nature, they 

delineated parameters that might allow for 

potential existence. By extending the notion 

from circulance to θ-circulance, the limitations 

on the existence of θ-circulant involutory MDS 

matrices were eliminated, even within fields of 

characteristic 2. Ultimately, they expanded the 

definition of involutory and introduced a novel 

direct approach to constructing nearly 

involutory θ-circulant MDS matrices. In [17], 

the researchers calculated the reciprocal of 

circulant matrices with dimensions 2𝑛 × 2𝑛, 

where the entries belong to the 𝐺𝐹(2𝑚), and 

this holds true for cases where 𝑛 ≥ 3. The 

computational process initiates with a software 

application that produces the cofactors of an 

8 × 8 circulant matrix. Building upon these 

findings, the recursive construction of a 

circulant matrix’s inverse becomes feasible. In 

[18], the researchers established the absence of 

specific orthogonal circulant MDS matrices. 

Following this, they provided a condition that is 

both necessary and sufficient for orthogonal θ-

circulant matrices, employing 𝑞-polynomial 

rings. Furthermore, they delved into the 

exploration of orthogonal circulant MDS 

matrices across Galois rings. 

In [19], the researchers introduced effective 

MDS matrices with a circulant-like structure in 

both 4 × 4 and 8 × 8 dimensions. They 

referred to these matrices as Type-I circulant-

like matrices. They demonstrated that 

circulant-like MDS matrices of size 𝑙 × 𝑙 
cannot possess involution or orthogonality 

properties, which are advantageous for 

designing SPN networks. Despite the 

efficiency of these matrices, there is no 

guarantee that their inverses will also be 

efficient. The authors investigated the creation 

of 2𝑙 × 2𝑙 involutory MDS matrices, 

commencing with a 𝑙 × 𝑙 submatrix that is 

itself an MDS matrix. They regarded the 𝑙 × 𝑙 
submatrix as circulant MDS matrices. They 

presented proof indicating the absence of 

circulant-like MDS matrices of size 2𝑙 × 2𝑙  
when 𝑙 is an even number. In [20], a novel 

category of matrices resembling circulants was 

introduced by the authors. These matrices 

possess involutory characteristics by design, 

denoted as Type-II circulant-like matrices. 

Their investigation delved into the MDS 

attributes of 𝑙 × 𝑙 circulant matrices, as well as 

Type-I and Type-II circulant-like matrices, 

leading to the development of new, efficient 

MDS matrices tailored for lightweight 

cryptography, particularly when 𝑙 is limited to 

8. Additionally, the study encompassed the

exploration of orthogonal and involutory

features of such matrices, aiming to create

MDS matrices with both efficient computation

and inverse properties. The authors also

examined the compelling properties of
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circulant matrices, Type-I, and Type-II 

circulant-like matrices, unveiling insights 

applicable across diverse realms of 

mathematics and computer science.  

Unfortunately, when we examined the 

proposed Type-I circulant-like MDS matrices 

of size 4 × 4 and 8 × 8 in [19, 20], these 

matrices did not satisfy the conditions of being 

MDS matrices. 

MDS matrices [27, 29, 30] with maximum 

branches [21, 22] enable them to achieve 

maximum diffusion capability. Additionally, the 

number of fixed points [23] is also a crucial 

criterion for MDS matrices as it can impact the 

security of future cryptographic algorithms. The 

aforementioned works propose the construction 

of circulant or circulant-like matrices; however, 

they have not addressed the matrices’ fixed 

point counts. 

In this paper, we propose algorithms for 

generating efficient circulant-like MDS matrices of 

size 4 × 4 and 8 × 8 for implementation. 

Subsequently, we evaluate the fixed points, and the 

number of XOR operations of the proposed MDS 

matrices, and compare them with MDS matrices of 

other well-known ciphers. These proposed MDS 

matrices can become promising candidates for 

many cryptographic algorithms in the future. 

The structure of the paper is outlined as 

follows. Section 2 provides the preliminaries. 

Section 3 introduces algorithms for producing 

effective circulant-like MDS matrices for 

practical use. The experimental outcomes and 

comparative analyses are detailed in Section 4. 

Finally, Section 5 encapsulates the conclusions. 

II. PRELIMINARIES 

A. Circulant-like MDS matrix 

The MDS matrices are derived from the 

principles of error correction codes [24], 

specifically using codes with maximal distance 

separable or MDS properties. Observing the 

MDS matrix reveals its unique nature, 

characterized by the property that every square 

sub-matrix is invertible.  

Definition 1 [24]. A matrix is an MDS matrix 

if and only if every sub-matrix is non-singular. 

Circulant and Type-I circulant-like matrices 

are defined as follows. 

Definition 2 [26]. The matrix of size 𝑛 × 𝑛 

represented as 

[

𝑏0
𝑏𝑛−1
⋮
𝑏1

    

𝑏1
𝑏0
⋮
𝑏2

    

…
…
⋮
…

     

𝑏𝑛−1
𝑏𝑛−2
⋮
𝑏0

] 

is termed a circulant matrix and denoted as 

𝐶𝑖𝑟𝑐(𝑏0, … , 𝑏𝑛−1). 

Definition 3. (Type-I circulant-like Matrix) 

[2,19]. 

The matrix of size 𝑚 ×𝑚: 

[
𝑏 1
1𝑇 𝐵

] 

is referred to as a Type-I circulant-like matrix, 

where 𝐵 = 𝐶𝑖𝑟𝑐(1, 𝑏1, … , 𝑏𝑚−2), 1 =  (1, … ,1)⏟    
            𝑚−1 𝑡𝑖𝑚𝑒𝑠

 

, 1  represents the unit element, and  𝑏𝑖’s and 𝑏 

are any nonzero elements of the underlying 

field other than 1.  

Example. Choosing 𝑏 = 02, 𝐵 =
𝐶𝑖𝑟𝑐(02, 01, 03), we have a Type-I circulant-

like matrix of size 4 as follows. 

Selecting 𝑏 = 02, and 𝐵 =
𝐶𝑖𝑟𝑐(02, 01, 03), results in the creation of a 

4 × 4 Type-I circulant-like matrix. 

𝐵 = [

02 01 01 01
01  02 01
01  03 02
01  01 03

     
03
01
02

] 

A circulant-like matrix that satisfies the 

MDS condition is referred to as a circulant-like 

MDS matrix. 

B. Introduction to Fixed Points and XOR 

Operations 

A fixed point [23] of a linear transformation 

𝑇: 𝐺𝐹(2𝑞)𝑛 → 𝐺𝐹(2𝑞)𝑛 with the representation 

non-singular matrix 𝐵 = [𝑏𝑖,𝑗]𝑚×𝑚 over 

𝐺𝐹(2𝑞) is the vector 𝑋 satisfies: 𝐵. 𝑋 = 𝑋. This 

means that when 𝑋 undergoes the linear 

transformation 𝑇, it remains unchanged, without 

any alteration. 
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There is no diffusion at the fixed points 

because the linear layer does not affect these 

input blocks. Therefore, an attacker can exploit 

this vulnerability to easily conduct a 

straightforward plaintext attack. In practice, 

the expected number of fixed points for a 

linear transformation is 1 since 𝐵. 0 = 0 

always holds. 

It can be observed that the number of XOR 

operations is a simple and manageable metric. 

However, the coefficients of MDS matrices are 

often chosen to have a small number of XOR 

operations, for instance, with low Hamming 

weight. As highlighted in [25], a small number 

of XOR operations significantly reduces 

hardware area. On the other hand, when MDS 

matrices have a small number of XOR 

operations, it also enhances the software 

execution speed. 

Definition 4. The XOR count of an element 

α in the field 𝐺𝐹(2𝑞)/𝑔(𝑋) is the number of 

XOR operations required to perform the 

multiplication of α with any given element 𝛽 in 

𝐺𝐹(2𝑞)/𝑔(𝑋). 

III. PROPOSING ALGORITHMS FOR EFFICIENT 

GENERATION OF TYPE-I CIRCULANT-LIKE 

MATRICES FOR IMPLEMENTATION 

In this section, we present two algorithms 

for the efficient generation of Type-I circulant-

like MDS matrices for implementation, with 

sizes 4 × 4 and 8 × 8. 

We select the elements of these matrices 

from the sets {0𝑥01,… ,0𝑥07} and 

{0𝑥01, … ,0𝑥09} because these elements have 

low Hamming weight and they have a lower 

number of XOR operations compared to other 

elements in the field 𝐺𝐹(28), resulting in low 

implementation costs. Therefore, this contributes 

to making the XOR operations of the obtained 

matrices small. 

Consider a Type-I circulant-like matrix of 

size 4 × 4  in the following form. 

( 

𝑚0 01 01 01
01  01 𝑚1
01  𝑚2 01
01  𝑚1 𝑚2

     
𝑚2

𝑚1
01

 )         (1)  

where 𝑚0, 𝑚1, 𝑚2 ∈ {0𝑥01, … ,0𝑥07} 

Algorithm 1. Generate efficient 4 × 4 Type-

I circulant-like matrices for implementation 

Input: An empty 4 × 4  matrix 𝑀 over 

𝐺𝐹(28); Set 𝒥 consists of a list of elements in 

the form (𝑚0, 𝑚1, 𝑚2), 𝒥 = ∅. 

Output: Efficiently implementable Type-I 

circulant-like MDS matrices of size 4 × 4 with 

elements from 𝐺𝐹(28). 

Step 1: Generate matrix 𝑀 in the form of a 

Type-I circulant-like matrix as shown in (1) with 

3 symbolic elements 𝑚𝑖 ∈ 𝐺𝐹(2
8), 0 ≤ 𝑖 ≤ 2.  

Step 2: Choose a combination of three 

elements (𝑚0, 𝑚1, 𝑚2) for 𝑚𝑖 ∈
{0𝑥01, … ,0𝑥07} (0 ≤ 𝑖 ≤ 2).  

Step 3: In case the tuple (𝑚0, 𝑚1, 𝑚2) is not 

part of 𝒥, then: 

- Fill in these elements into matrix 𝑀. 

- Check if the obtained matrix 𝑀 is MDS. 

+ If this statement holds, store the matrix 𝑀 

in the file and add this tuple (𝑚0, 𝑚1, 𝑚2) to 𝒥. 

Step 4: If |𝒥| < 343, return to Step 2. 

Return: File of Type-I circulant-like MDS 

matrices of size 4 × 4 with elements in set 

{0𝑥01, … ,0𝑥07}. 

Remark 1. Algorithm 1 is executed when all 

possibilities of (𝑚0, 𝑚1, 𝑚2) for 𝑚𝑖 ∈
{0𝑥01, … ,0𝑥07}, (0 ≤ 𝑖 ≤ 2) have been 

exhausted. In this case, the number of Type-I 

circulant-like matrices to be checked is 343. 

Note that the MDS property of the matrices 

in Algorithm 1 and Algorithm 2 is verified 

according to Definition 1. We developed a 

custom program to check whether all 

submatrices of any given input matrix have non-

zero determinants. 

For Type-I circulant-like matrices of size 

8 × 8, to find efficient matrices for execution 

with many 1’s, we examine these matrices as 

follows: 
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(

 
 
 
 
 

𝑚0
01
01
01

    

01
01
𝑚6
𝑚5

    

01
𝑚1
01
𝑚6

    

01
𝑚2
𝑚1
01

   

01
𝑚3
𝑚2
𝑚1

    

01
𝑚4
𝑚3
𝑚2

    

01
𝑚5
𝑚4
𝑚3

    

01
𝑚6
𝑚5
𝑚4

01
01
01
01

    

𝑚4
𝑚3
𝑚2
𝑚1

     

𝑚5
𝑚4
𝑚3
𝑚2

    

𝑚6
𝑚5
𝑚4
𝑚3

    

01
𝑚6
𝑚5
𝑚4

    

𝑚1
01
𝑚6
𝑚5

    

𝑚2
𝑚1
01
𝑚6

   

𝑚3
𝑚2
𝑚1
01

 )

 
 
 
 
 

(2) 

Where 𝑚0, 𝑚1, … ,𝑚6 ∈ {0𝑥01,… ,0𝑥09}. 

Algorithm 2. Generate efficient 8 × 8 Type-

I circulant-like matrices for implementation 

Input: An empty matrix 𝑀 of size 8 × 8 

over 𝐺𝐹(28); Set 𝒥 consisting of a list of tuples 

(𝑚0, 𝑚1, … ,𝑚6), 𝒥 = ∅. 

Output: Efficiently implementable Type-I 

circulant-like MDS matrices of size 8 × 8 with 

elements from 𝐺𝐹(28). 

Step 1: Generate matrix 𝑀 in the form of a 

Type-I circulant-like matrix as shown in (2) 

with 7 symbolic elements 𝑚𝑖 ∈ 𝐺𝐹(2
8), 0 ≤

𝑖 ≤ 6.  

Step 2: Choose a combination of seven 

elements (𝑚0, 𝑚1, … ,𝑚6) for 𝑚𝑖 ∈
{0𝑥01, … ,0𝑥09} (0 ≤ 𝑖 ≤ 6). 

Step 3: In case the tuple (𝑚0, 𝑚1, … ,𝑚6) is 

not part of 𝒥, then: 

- Fill in these elements into matrix 𝑀. 

- Check if the obtained matrix 𝑀 is MDS. 

+ If this statement holds, store the matrix 

𝑀 in the file and add this tuple 

(𝑚0, 𝑚1, … ,𝑚6) to 𝒥. 

Step 4: If |𝒥| < 4,782, 969, return to Step 2. 

Return: File of Type-I circulant-like MDS 

matrices of size 8 × 8 with elements in set 

{0𝑥01, … ,0𝑥09}. 

Remark 2. Algorithm 2 is executed when all 

possibilities of (𝑚0, 𝑚1, … ,𝑚6) for 𝑚𝑖 ∈
{0𝑥01, … ,0𝑥09}, (0 ≤ 𝑖 ≤ 6) have been 

exhausted. In this case, the number of Type-I 

circulant-like matrices to be checked is 

4,782, 969. 

The experimental section is presented in 

Section 4. 

IV. EXPERIMENT AND COMPARISON 

Conducting experiments with Algorithm 1 

and Algorithm 2 with C using a computer 

configured as follows: VivoBook_ASUSLaptop 

X513EP_X515EP (Core i5-10210U, 8GB 

RAM). 

For Algorithm 1, the input data is an empty 

4 × 4 Type-I circulant-like matrix over the field 

𝐺𝐹(28) with the primitive polynomial 𝑥8 +
𝑥4 + 𝑥3 + 𝑥2 + 1. 

For Algorithm 2, the input data is an empty 

8 × 8 Type-I circulant-like matrix over the field 

𝐺𝐹(28) with the primitive polynomial 𝑥8 +
𝑥4 + 𝑥3 + 𝑥2 + 1. 

For calculating the number of XOR 

operations for the matrices, we based our 

approach on Definition 4 and the method for 

calculating the number of XOR operations 

outlined in [25]. 

After experimenting to find a set of Type-I 

circulant-like MDS matrices of size 4 × 4 from 

Algorithm 1 and 8 × 8 matrices from Algorithm 

2, we proceeded to calculate the fixed points of 

these matrices. Then, we selected only those 

matrices with exactly one fixed point. 

Subsequently, we calculated the number of 

XOR operations for each obtained matrix and 

chose matrices with the minimum number of 

XOR operations among them. The summarized 

results are presented in Table 1. 

After the experimental process, we obtained 

two Type-I circulant-like MDS matrices of size 

4 × 4 with a minimum XOR count of 147. 

These matrices are presented in Table 2. For the 

8 × 8 matrices, we obtained six Type-I 

circulant-like MDS matrices with a minimum 

XOR count of 948. These matrices are 

presented in Table 3. 
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TABLE 1. SUMMARY OF THE NUMBER  

OF EFFECTIVE TYPE-I CIRCULANT-LIKE  

MDS MATRICES OBTAINED 

Type of 

Matrix 

Total 

matrices 

 in the  

search 

space 

Run 

time 

Number 

of 

obtained 

MDS 

matrices 

Number 

of MDS 

matrices 

with a 

fixed 

point 

count of 

1 

Number 

of 

matrices 

with the 

minimum 

XOR 

count 

Circulant-

like 

matrices 

of size 

4 × 4 

73 = 

343 

4,6 
minutes 

 
71 

 
71 

 

2 

(with 
XOR 

count = 

147) 

Circulant-

like 

matrices 

of size 

8 × 8 

 

97 = 

4,782, 969 

102,2 
hours 

 
24 

 
24 

6 

(with 
XOR 

count 

=948) 

From the results obtained in Table 2, we 

proceed to compare our proposed circulant-

likeMDS matrices of size 4 × 4 with MDS 

matrices from some well-known codes. Table 4 

presents the comparison of 4 × 4 MDS 

matrices, while Table 5 compares their inverses. 

TABLE 2. TWO PROPOSED TYPE-I CIRCULANT-

LIKE MDS MATRICES OF SIZE 4×4 WITH THE 

MINIMUM XOR COUNT FOR THE PRIMITIVE 

POLYNOMIAL  𝑋8 + 𝑋4 + 𝑋3 + 𝑋2 + 1 

No. 
Set

(𝒎𝟎,𝒎𝟏,𝒎𝟐) 
Type-I Circulant-Like 

Matrix (𝟒 × 𝟒) 

Numb

er of 

Fixed 

Points 

Number 

of 

XORs 

1 (02,02,06) 

𝐴1 = 

= [

02 01
01 01

01 01
02 06

01 06
01 02

01 02
06 01

] 
20 

147 
 

2 (02,06,02) 

𝐴2= 

= [

02 01
01 01

01 01
06 02

01 02
01 06

01 06
02 01

] 

 

20 147 

TABLE 3. SIX PROPOSED TYPE-I CIRCULANT-LIKE MDS MATRICES OF SIZE 8 × 8 
WITH THE MINIMUM XOR COUNT FOR THE PRIMITIVE POLYNOMIAL 𝑋8 + 𝑋4 + 𝑋3 + 𝑋2 + 1

No. Set (𝒎𝟎,𝒎𝟏, … ,𝒎𝟔) Type-I Circulant-Like Matrix (𝟖 × 𝟖) 
Number of 

Fixed Points 

Number of 

XORs 

1  (2,9,7,6,3,2,4) [
2 1
1𝑇 𝐶𝑖𝑟𝑐(1, 9, 7, 6, 3, 2,4)

] 20 948 

2  (2,3,9,2,7,4,6) [
2 1
1𝑇 𝐶𝑖𝑟𝑐(1, 3, 9, 2, 7,4, 6)

] 20 948 

3  (2,2,6,9,4,3,7) [
2 1
1𝑇 𝐶𝑖𝑟𝑐(1, 2, 6, 9, 4,3, 7)

] 20 948 

4  (2,7,3,4,9,6,2) [
2 1
1𝑇 𝐶𝑖𝑟𝑐(1, 7, 3, 4, 9, 6 , 2)

] 20 948 

5  (2,6,4,7,2,9,3) [
2 1
1𝑇 𝐶𝑖𝑟𝑐(1, 6, 4, 7, 2, 9, 3)

] 20 948 

6  (2,4,2,3,6,7,9) [
2 1
1𝑇 𝐶𝑖𝑟𝑐(1, 4, 2, 3, 6,7, 9)

] 20 948 

TABLE 4. COPARISONS OF PROPOSED TYPE-I CIRCULANT-LIKE MATRICES 

OF SIZE 4 × 4 WITH OTHER ONES 

MDS matrices of size 𝟒 × 𝟒 (𝑨)  Primitive polynomial Number of 

Fixed Points 

Number of 

XORs 

Circ[0xc4,0x65,0xc8,0x8b] 

(Hierocrypt block cipher) 
𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1 20 448 

Circ [0x2, 0x3, 0x1, 0x1] 

(AES block cipher) 
𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 

 

216 

 

152 

[

01 𝐸𝐹 5𝐵 5𝐵
5𝐵 𝐸𝐹 𝐸𝐹 01
𝐸𝐹 5𝐵 01 𝐸𝐹
𝐸𝐹 01 𝐸𝐹 5𝐵

] 

(Twofish block cipher) 

𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1 20 444 

Type-I circulant-like MDS matrices of size 4 × 4 in [19, 20] 

They all not satisfy the conditions to be MDS matrices 

for the primitive polynomial 𝑥8 + 𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 1 

in  [19] 

and the primitive polynomial 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 

in  [20] 

Our two proposed Type-I circulant-like matrices of size 

4 × 4 (Table 2) 
𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 147 
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Looking at Table 4, it can be observed that 

the two proposed Type-I circulant-like MDS 

matrices of size 4 × 4 in Table 2 (matrices 𝐴1 
and 𝐴2) have the smallest and best possible 

number of fixed points, while the fixed-point 

count of AES is 216, which is quite high and 

may affect security. Additionally, the number 

of XOR operations for our proposed matrices 

is smaller compared to matrices from 

Hierocrypt, AES, and Twofish when calculated 

using the same method. Therefore, it can be 

stated that our proposed 4 × 4 MDS matrices 

are very promising. 

TABLE 5. COMPARISON OF 4 × 4 INVERSE MDS MATRICES 

Inverse MDS matrices of size 𝟒 × 𝟒 (𝑨−𝟏) Primitive polynomial Number of 

Fixed Points 

Number 

of XORs 

𝐴−1 =Circ[0x82, 0xc4, 0x34, 0xf6], 

Inverse of the matrix 

Circ[0xc4,0x65,0xc8,0x8b] 

(Hierocrypt block cipher) 

𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1 20 520 

𝐴−1 =Circ[0xe, 0xb, 0xd, 0x9], 

Inverse of the matrix 

Circ [0x2, 0x3, 0x1, 0x1] 

(AES block cipher) 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1 216 440 

𝐴−1 = [

63 7𝐸 6𝐵 92
𝐷2 6𝐵 𝐹5 𝐷1
75 92 𝐷1 𝐹𝐸
𝐴𝐵 63 𝐷2 75

] 

Inverse of the matrix 

[

01 𝐸𝐹 5𝐵 5𝐵
5𝐵 𝐸𝐹 𝐸𝐹 01
𝐸𝐹 5𝐵 01 𝐸𝐹
𝐸𝐹 01 𝐸𝐹 5𝐵

] 

(Twofish block cipher) 

𝑥8 + 𝑥6 + 𝑥5 + 𝑥 + 1 20 535 

𝐴1
−1 = [

𝐶2 98
98 72

98 98
52 0𝐷

98 0𝐷
98 52

72 52
0𝐷 72

] 

Inverse of our proposed Type-I circulant-

like matrix 𝐴1 of size 4 × 4 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 502 

𝐴2
−1 = [

𝐶2 98
98 72

98 98
0𝐷 52

98 52
98 0𝐷

72 0𝐷
52 72

] 

Inverse of our proposed Type-I circulant-

like matrix 𝐴2 of size 4 × 4 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 502 

Through Table 5, it can be seen that the 

inverses of our proposed matrices 𝐴1 and 𝐴2 
also have a very good fixed point count of 1. 

Meanwhile, the inverse matrix of AES still has 

a very large fixed point count of 216. In terms of 

XOR operations, the inverses of our proposed 

matrices 𝐴1 and 𝐴2  also have fewer XOR 

operations compared to matrices of Hierocrypt, 

Twofish, and more than AES. 

Recalling that in cryptography, MDS matrices 

with a smaller fixed point count, ideally 1, are 

considered better. Additionally, for efficient 

execution and low execution cost, fewer XOR 

operations in MDS matrices are preferable. 
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From the above observations, it can be seen 

that our two proposed Type-I circulant-like 

MDS matrices of size 4 × 4 are efficient 

matrices suitable for execution and may serve as 

candidates for various cryptographic algorithms. 

Based on the results in Table 3, we proceed 

to compare our proposed six Type-I circulant-

like MDS matrices of size 8 × 8 with MDS 

matrices from some well-known cryptographic 

schemes. Table 6 shows the comparison of the 

8 × 8 MDS matrices, and Table 7 compares 

their inverses. 

 

TABLE 6. COMPARISON OF OUR 8×8 TYPE-I CIRCULANT-LIKE MATRICES  

WITH MATRICES FROM WELL-KNOWN CIPHERS 

MDS matrices of size 𝟖 × 𝟖 (𝑨) Primitive polynomial 

Number 

of Fixed 

Points 

Number 

of XORs 

Six proposed Type-I circulant-like MDS matrices of 

size 𝟖 × 𝟖 (in Table 3) 

 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 948 

Circ[0x1, 0x1, 0x4, 0x1, 0x8, 0x5, 0x2, 0x9] 

(Whirlpool block cipher) 

 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1  20 840 

Circ[0x1, 0x1, 0x5, 0x1, 0x8, 0x6, 0x7, 0x4] 

(Kalyna block cipher) 

 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1  20 952 

Type-I circulant-like MDS matrices of size 8 × 8 in [19, 20],  

 

Do not satisfy the conditions to be MDS matrices 

From Table 6, it can be observed that our 

proposed 8 × 8 Type-I circulant-like matrices 

share the same number of fixed points (1) as 

matrices from Whirlpool and Kalyna. In terms 

of XOR operations, our matrices have fewer 

XOR operations (better performance) compared 

to Kalyna and more than Whirlpool. 

TABLE 7. COMPARISON OF 8 × 8 INVERSE MDS MATRICES 

Inverse MDS matrices of size 𝟖 × 𝟖 (𝑨−𝟏) Primitive polynomial Number 

of Fixed 

Points 

Number 

of XORs 

The inverses of the 6 Type-I circulant-like matrices of size 

8 × 8 proposed by us in Table 3 

   

[
 
 
 
 
 
 
 
𝐸1 𝐷𝐸
𝐷𝐸 5𝐶

𝐷𝐸 𝐷𝐸
6𝐴 𝐵𝐶

𝐷𝐸 44
𝐷𝐸 0𝐸

5𝐶 6𝐴
44 5𝐶

𝐷𝐸 𝐷𝐸
𝐵𝐸 𝐷𝐹

𝐷𝐸 𝐷𝐸
0𝐸 44

𝐵𝐶 𝐵𝐸
6𝐴 𝐵𝐶

𝐷𝐹 0𝐸
𝐵𝐸 𝐷𝐹

𝐷𝐸 𝐷𝐹
𝐷𝐸 𝐵𝐸

0𝐸 44
𝐷𝐹 0𝐸

𝐷𝐸 𝐵𝐶
𝐷𝐸 6𝐴

𝐵𝐸 𝐷𝐹
𝐵𝐶 𝐵𝐸

5𝐶 6𝐴
44 5𝐶

𝐵𝐶 𝐵𝐸
6𝐴 𝐵𝐶

0𝐸 44
𝐷𝐹 0𝐸

5𝐶 6𝐴
44 5𝐶 ]

 
 
 
 
 
 
 

 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 2142 

[
 
 
 
 
 
 
 
𝐸1 𝐷𝐸
𝐷𝐸 5𝐶

𝐷𝐸 𝐷𝐸
𝐷𝐹 6𝐴

𝐷𝐸 𝐵𝐸
𝐷𝐸 44

5𝐶 𝐷𝐹
𝐵𝐸 5𝐶

𝐷𝐸 𝐷𝐸
0𝐸 𝐵𝐶

𝐷𝐸 𝐷𝐸
44 𝐵𝐸

6𝐴 0𝐸
𝐷𝐹 6𝐴

𝐵𝐶 44
0𝐸 𝐵𝐶

𝐷𝐸 𝐵𝐶
𝐷𝐸 0𝐸

44 𝐵𝐸
𝐵𝐶 44

𝐷𝐸 6𝐴
𝐷𝐸 𝐷𝐹

0𝐸 𝐵𝐶
6𝐴 0𝐸

5𝐶 𝐷𝐹
𝐵𝐸 5𝐶

6𝐴 0𝐸
𝐷𝐹 6𝐴

44 𝐵𝐸
𝐵𝐶 44

5𝐶 𝐷𝐹
𝐵𝐸 5𝐶 ]

 
 
 
 
 
 
 

 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 1986 

[
 
 
 
 
 
 
 
𝐸1 𝐷𝐸
𝐷𝐸 5𝐶

𝐷𝐸 𝐷𝐸
0𝐸 𝐵𝐸

𝐷𝐸 𝐵𝐶
𝐷𝐸 𝐷𝐹

5𝐶 0𝐸
𝐵𝐶 5𝐶

𝐷𝐸 𝐷𝐸
6𝐴 44

𝐷𝐸 𝐷𝐸
𝐷𝐹 𝐵𝐶

𝐵𝐸 6𝐴
0𝐸 𝐵𝐸

44 𝐷𝐹
6𝐴 44

𝐷𝐸 44
𝐷𝐸 6𝐴

𝐷𝐹 𝐵𝐶
44 𝐷𝐹

𝐷𝐸 𝐵𝐸
𝐷𝐸 0𝐸

6𝐴 44
𝐵𝐸 6𝐴

5𝐶 0𝐸
𝐵𝐶 5𝐶

𝐵𝐸 6𝐴
0𝐸 𝐵𝐸

𝐷𝐹 𝐵𝐶
44 𝐷𝐹

5𝐶 0𝐸
𝐵𝐶 5𝐶 ]

 
 
 
 
 
 
 

 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 2017 
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[
 
 
 
 
 
 
 
𝐸1 𝐷𝐸
𝐷𝐸 5𝐶

𝐷𝐸 𝐷𝐸
𝐵𝐶 𝐷𝐹

𝐷𝐸 0𝐸
𝐷𝐸 𝐵𝐸

5𝐶 𝐵𝐶
0𝐸 5𝐶

𝐷𝐸 𝐷𝐸
44 6𝐴

𝐷𝐸 𝐷𝐸
𝐵𝐸 0𝐸

𝐷𝐹 44
𝐵𝐶 𝐷𝐹

6𝐴 𝐵𝐸
44 6𝐴

𝐷𝐸 6𝐴
𝐷𝐸 44

𝐵𝐸 0𝐸
6𝐴 𝐵𝐸

𝐷𝐸 𝐷𝐹
𝐷𝐸 𝐵𝐶

44 6𝐴
𝐷𝐹 44

5𝐶 𝐵𝐶
0𝐸 5𝐶

𝐷𝐹 44
𝐵𝐶 𝐷𝐹

𝐵𝐸 0𝐸
6𝐴 𝐵𝐸

5𝐶 𝐵𝐶
0𝐸 5𝐶 ]

 
 
 
 
 
 
 

 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 1976 

[
 
 
 
 
 
 
 
𝐸1 𝐷𝐸
𝐷𝐸 𝐷𝐸

𝐷𝐸 𝐷𝐸
𝐵𝐸 44

𝐷𝐸 𝐷𝐹
𝐷𝐸 6𝐴

𝐷𝐸 𝐵𝐸
𝐷𝐹 𝐷𝐸

𝐷𝐸 𝐷𝐸
𝐵𝐶 0𝐸

𝐷𝐸 𝐷𝐸
6𝐴 𝐷𝐹

44 𝐵𝐶
𝐵𝐸 44

0𝐸 6𝐴
𝐵𝐶 0𝐸

𝐷𝐸 0𝐸
𝐷𝐸 𝐵𝐶

6𝐴 𝐷𝐹
0𝐸 6𝐴

𝐷𝐸 44
𝐷𝐸 𝐵𝐸

𝐵𝐶 0𝐸
44 𝐵𝐶

𝐷𝐸 𝐵𝐸
𝐷𝐹 𝐷𝐸

44 𝐵𝐶
𝐵𝐸 44

6𝐴 𝐷𝐹
0𝐸 6𝐴

𝐷𝐸 𝐵𝐸
𝐷𝐹 𝐷𝐸]

 
 
 
 
 
 
 

 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 1884 

[
 
 
 
 
 
 
 
𝐸1 𝐷𝐸
𝐷𝐸 𝐷𝐸

𝐷𝐸 𝐷𝐸
44 0𝐸

𝐷𝐸 6𝐴
𝐷𝐸 𝐵𝐶

𝐷𝐸 44
6𝐴 𝐷𝐸

𝐷𝐸 𝐷𝐸
𝐷𝐹 𝐵𝐸

𝐷𝐸 𝐷𝐸
𝐵𝐶 6𝐴

0𝐸 𝐷𝐹
44 0𝐸

𝐵𝐸 𝐵𝐶
𝐷𝐹 𝐵𝐸

𝐷𝐸 𝐵𝐸
𝐷𝐸 𝐷𝐹

𝐵𝐶 6𝐴
𝐵𝐸 𝐵𝐶

𝐷𝐸 0𝐸
𝐷𝐸 44

𝐷𝐹 𝐵𝐸
0𝐸 𝐷𝐹

𝐷𝐸 44
6𝐴 𝐷𝐸

0𝐸 𝐷𝐹
44 0𝐸

𝐵𝐶 6𝐴
𝐵𝐸 𝐵𝐶

𝐷𝐸 44
6𝐴 𝐷𝐸]

 
 
 
 
 
 
 

 

 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 2127 

𝐴−1= Circ[0x4, 0xaf, 0xe, 0xa4, 0xc2, 0xc2, 0xcb, 0x3e] 

Inverse of the matrix 
Circ[0x1, 0x1, 0x4, 0x1, 0x8, 0x5, 0x2, 0x9] 

(Whirlpool Block cipher) 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 1792 

𝐴−1 = Circ[0xad,0x95,0x76,0xa8,0x2f, 0x49, 0xd7, 0xca] 

Inverse of the matrix 

Circ[0x1, 0x1, 0x5, 0x1, 0x8, 0x6, 0x7, 0x4] 
(Kalyna Block cipher) 

𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1 20 2048 

Through Table 7, it can be observed that the 

inverses of our 6 matrices all have a fixed point 

score of 1, matching the inverses of Whirlpool’s 

matrix and Kalyna’s one. In terms of XOR 

operations, our 6 matrices have a larger XOR 

count compared to the inverse of the Whirlpool 

matrix. However, they exhibit a lower XOR 

count (better performance) compared to Kalyna. 

Please note that in this paper, we focus 

solely on proposing efficient circulant-like 

MDS matrices of size 4 × 4, and 8 × 8 for 

implementation. While we are capable of 

handling larger matrices such as 16 × 16 or 

32 × 32, such large MDS matrices are rarely 

used in cryptography due to the significant 

execution costs they impose on cryptographic 

algorithms. On the other hand, for lightweight 

applications, smaller MDS matrices are more 

desirable to reduce execution costs.  

V. CONCLUSION 

A significant obstacle faced by 

cryptographic designers involves discovering 

MDS matrices with a minimal implementation 

cost. Researching the construction of MDS 

matrices based on circulant-like matrices is an 

intriguing approach. In this article, we introduce 

algorithms designed to produce effective 

circulant-like MDS matrices of size 4 × 4 and 

8 × 8 suitable for practical application. 

Following this, we assess the fix points and the 

quantity of XOR operations associated with the 

suggested MDS matrices. We then conduct a 

comparative analysis with MDS matrices from 

various renowned ciphers and the proposed 

Type-I circulant-like MDS matrices in [19, 20]. 

Our proposed MDS matrices exhibit potential as 

viable choices for numerous cryptographic 

algorithms in the forthcoming years. 
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