
Journal of Science and Technology on Information security

 No 1.CS (21) 2024 5

This manuscript is received on April 16, 2024. It is

commented on May 22, 2024 and is accepted on June 10,

2024 by the first reviewer. It is commented on May 21, 2024

and is accepted on June 14, 2024 by the second reviewer.

Nguyen Trung Dung, Pham Van Toi, Phung Minh Hieu

Abstract— Regular expressions, or regexes,

have become an integral part of modern

software development, seamlessly woven into

the fabric of countless applications. From

validating user input in web forms to parsing

complex log files for data analysis, regexes are

employed across a vast spectrum of tasks. Their

ability to precisely define and match patterns

within text makes them invaluable tools for

tasks ranging from simple data extraction to

sophisticated security measures. However, this

widespread reliance on regexes also introduces

a significant security vulnerability: ReDoS

(Regular Expression Denial of Service) attacks.

These attacks exploit the inherent complexity of

regex matching by crafting malicious input that

triggers an exponentially long processing time,

effectively bringing the application to a

standstill. The potential for ReDoS attacks

highlights the crucial need for developers to

exercise extreme caution when designing and

implementing regex-based components within

their applications. This paper explores the

inherent ambiguity of regular expressions,

fuzzing with static analysis and proposes a

novel fuzzing technique to generate effective

attack patterns. By analyzing the potential

interpretations of ambiguous regex constructs,

our method identifies and exploits weaknesses

in software implementations that rely on regex

for input validation. The proposed fuzzing

algorithm generates test cases that

systematically explore the ambiguity space,

maximizing the likelihood of uncovering

vulnerabilities related to unexpected regex

behavior. This approach aims to enhance

software security by proactively detecting and

mitigating potential attack vectors stemming

from the misinterpretation of regular

expression patterns.

Tóm tắt— Biểu thức chính quy (regex) là một

phần không thể thiếu trong phát triển ứng dụng

phần mềm, được tích hợp một cách liền mạch vào

vô số ứng dụng. Biểu thức chính quy được sử dụng

trong nhiều nhiệm vụ khác nhau từ xác thực đầu

vào của người dùng ứng dụng web đến phân tích dữ

liệu văn bản phức tạp. Tuy nhiên, sự phụ thuộc vào

biểu thức chính quy cũng mang đến một lỗ hổng

bảo mật nghiêm trọng như tấn công ReDoS

(Regular Expression Denial of Service - Tấn công từ

chối dịch vụ trên biểu thức chính quy). Tấn công

ReDoS khai thác dựa trên sự phức tạp của việc so

khớp biểu thức chính quy bằng cách tạo ra đầu vào

độc hại để thời gian xử lý tăng theo cấp số mũ,

khiến ứng dụng ngừng hoạt động. Mục đích của các

cuộc tấn công ReDoS tập trung vào các nhà phát

triển phần mềm khi thiết kế và triển khai các thành

phần dựa trên biểu thức chính quy trong sản phẩm.

Bài báo bao gồm thuật toán ambiguity của biểu

thức chính quy, kỹ thuật fuzzing kết hợp với phân

tích tĩnh, từ đó đề xuất một kỹ thuật mới để tạo ra

các mẫu tấn công hiệu quả. Bằng cách phân tích

cấu trúc ambiguity, nhóm tác giả đã xác định

phương pháp và kỹ thuật khai thác điểm yếu trong

cách triển khai phần mềm dựa vào biểu thức chính

quy để xác thực đầu vào. Thuật toán đề xuất được

thực nghiệm một cách có hệ thống, tối ưu hóa khả

năng phát hiện các lỗ hổng liên quan đến hành vi

trên biểu thức chính quy. Cách tiếp cận của bài báo

nhằm tăng cường bảo mật phần mềm thông qua

việc chủ động phát hiện và giảm thiểu các vectơ tấn

công tiềm ẩn phát sinh từ việc hiểu sai cách sử dụng

biểu thức chính quy.

Keywords— regex; fuzzing; automaton; ambiguity;

ReDoS.

Từ khóa— biểu thức chính quy; kỹ thuật fuzzing;

automaton; ambiguity; lỗ hổng ReDoS.

I. INTRODUCTION

Regular expressions (regex) are a powerful

tool used for searching and manipulating text.

They allow you to describe complex text

patterns and use them to validate data, extract

Regular expression attack technique on

ReDoS vulnerability

DOI: https://doi.org/10.54654/isj.v1i21.1030

Journal of Science and Technology on Information security

6 No 1.CS (21) 2024

information, or replace text. However, regex

can also be a source of security vulnerabilities,

particularly when used carelessly. One of the

most common vulnerabilities is ReDoS

(Regular Expression Denial of Service) [1, 2].

ReDoS occurs when a poorly designed regex

has to process an input string that can trigger

backtracking [3] when the regex engine tries

various combinations to match the input string.

In some cases, this backtracking can become

extremely lengthy, leading to the consumption

of significant system resources and causing the

server to hang or become sluggish.

ReDoS attacks typically target web

applications where users can provide input to

form fields or URL parameters. An attacker

can craft a malicious input [4] that triggers

backtracking in the application’s regex,

resulting in a denial-of-service for legitimate

users. This vulnerability has been

demonstrated in various platforms, including

.NET [5], where a single malicious input could

paralyze applications.

Preventing ReDoS attacks is a challenge,

developers often struggle to identify vulnerable

regexes and rewrite them to avoid exponential

complexity. Additionally, implementing

effective sanitizers to filter out malicious input

requires understanding the intricate patterns that

trigger worst-case behavior. While numerous

research efforts have been dedicated to the

detection and prevention of ReDoS attacks, a

comprehensive understanding of attack chains

that leverage ReDoS vulnerability discovery

mechanisms remains unexplored. This paper

leverages a combination of vulnerability

analysis and detection techniques to construct a

comprehensive attack chain specifically

targeting ReDoS vulnerabilities. By

meticulously analyzing the mechanics of

ReDoS, we identify exploitable weaknesses and

develop a methodology for crafting malicious

input strings that trigger excessive backtracking

in regex engines. This allows us to

systematically evaluate the effectiveness of

existing ReDoS detection mechanisms and

propose novel countermeasures to mitigate the

risks associated with this vulnerability.

The contributions of this paper are

summarized in three main points:

- Exploring algorithms related to Regex and

ReDoS attacks: Show the ambiguity inherent in

regular expressions (Regex) to understand how

they can be interpreted in multiple way;

Exponential Degree Ambiguity [6]: Analyze the

types of ambiguities in Regex that lead to

exponential complexity in the Regex algorithm,

which can be exploited for ReDoS attacks.

Infinite Degree Ambiguity [6]: Investigate cases

where Regex has infinite ambiguity, making it

more difficult to analyze and predict the behavior

of the Regex. Fuzzing with Static Analysis:

Combine fuzzing with static analysis to generate

input data strings that can trigger unexpected

behavior in Regex; Apply the selective

memorization technique developed by Davis et

al. [7] to optimize Regex algorithm performance,

particularly when handling large datasets.

- Introduction a string generation algorithm

for attacks: The paper introduces the new

algorithm for generating attack string based on

automata theory and fuzzing algorithm.

- Implementation and evaluation: The

paper details the implementation of the

proposed algorithm and evaluates its

performance on a dataset.

II. RELATED WORK

A regular expression is a text processing

utility for programmers. Regular expressions

are widely used in all kind of software, inside

a lot of libraries from program languages.

Since regular expressions are easy to get

wrong [8], which may help attackers to bypass

checks [9]. There are two ways to implement

regular expression matching. One uses

deterministic finite automaton (DFA), and

another uses backtracking. Recent

implementations like Go’s regexp or Rust’s

regex use DFA like approach. However,

implementations on many programming

languages use the backtracking approach.

When the regular expression matching is

implemented based on the backtracking, it may

take exponential or superlinear time

complexity against an input string length. In

Journal of Science and Technology on Information security

 No 1.CS (21) 2024 7

other words, a short string may invoke a long

matching time to a regular expression. For

example, the relation between matching times

against /^(a|a)*$/ and input string lengths,

shows extremely increasing matching time

against input string length (Figure 1).

Figure 1. Regular Expression’s execution time

Ambiguity of Regular Expression

A regular expression is ambiguous if there

are multiple matching processes for one string.

For example, /^(a|ab)(bc|c)$/ is ambiguous

because there are two matching processes for

the string 'abc'.

A regular expression is ambiguous does not

immediately mean that it is ReDoS vulnerable.

In the previous example, it is obvious that the

matching time will not explode because it has

only finite ambiguity. However, there is a deep

relationship between ReDoS vulnerability and

ambiguity of regular expression.

We show another example about an

ambiguous regular expression with a repetition

quantifier /^((a|ab)(bc|c))*$/. Specifically,

giving the string 'abc'.repeat(30) + 'a' can

invoke a very long matching time. In fact, the

matching time complexity of the regular

expression is exponential. The regular

expression is ReDoS vulnerable.

A regular expression (regex) is vulnerable to

ReDoS (Regular Expression Denial of Service)

attacks when it exhibits partial infinite

ambiguity. This ambiguity arises from the

presence of repetition constructs within the

regex, allowing for repeated matching of certain

sub-patterns. The combination of repetition and

ambiguity creates a scenario where the engine

can become trapped in an iterative backtracking

process, attempting to explore all possible

interpretations. As the backtracking process

continues without reaching a conclusive match,

the engine consumes an excessive amount of

computational resources, ultimately leading to a

denial of service condition.

EDA and IDA

We will proceed with NFA which is

equivalent to the regular expression. However,

we assume that the NFA is converted to reflect

the regular expression structure exactly (the

NFA constructed by Thompson construction

[10] without any determinization or

minimization).

The ambiguity of a regular expression

means that there are multiple ways to transition

from one state to another in a given string on

the NFA.

Suppose that the ambiguous transition is in

a loop of the NFA transition diagram. In this

case, there are two transitions to return to the

same state with the same string $w (Figure 2).

This means that the regular expression has

infinite ambiguity. The reason is that for a string

w^n with w in n order, there are 2^n

ways to transition, depending on whether it

chooses the above or the bottom transition for

each w.

Figure 2. The Transition of EDA Structure

A structure in the transition diagram of NFA

is called EDA (Exponential Degree Ambiguity)

structure [6], and it is the cause of cases where

the matching time becomes exponential.

It is not only in the presence of EDA that

regular expressions have infinite ambiguity.

Suppose that there is an ambiguous transition

Journal of Science and Technology on Information security

8 No 1.CS (21) 2024

across two loops (Figure 3), the same string

w can transition around the first loop and the

next loop, and can also transition between the

first states of the two loops.

Figure 3. The Transition of IDA Structure

The string w^n, there are n

transitions between the two loops with w,

so there are n different ways to transition.

This also means that the regular expression

has infinite ambiguity.

A structure in the transition diagram of NFA

is called IDA (Infinite Degree Ambiguity)

structure [6]. It is the cause of cases where the

matching time is polynomial of the second or

higher degree.

 Automated Detection of ReDoS

 Regular expressions (regexes) are often

poorly tested and vulnerable to ReDoS attacks,

which can cause denial of service by exploiting

inefficient matching algorithms. While some

regex engines offer limited mitigation through

matching limits, these are not widely used and

ineffective against attacks flooding a server with

malicious regexes. To address this, automated

tools for detecting ReDoS vulnerabilities are

crucial. These tools can be static, analyze the

regex structure for potential issues, or dynamic,

actually running matches to identify

problematic strings. Static analysis can have

false positives and miss vulnerabilities related to

backreferences [11]. Dynamic analysis is more

accurate, but it is time-consuming and may miss

vulnerabilities requiring specific input

sequences. The ideal solution would be a

comprehensive tool that combines both

approaches to effectively identify and mitigate

ReDoS vulnerabilities in regexes.

Fuzzing

Fuzzing is an automated software testing

method that generates a large amount of input

called "fuzz" and actually gives it to a program

to check if it shows any problematic behavior

(i.e. bug). In contrast to static analysis, where

the program is not actually run, fuzzing can be

considered as a kind of dynamic analysis, where

the program is actually run.

One of the features of fuzzing is that

evolutionary computation methods such as

genetic algorithms are sometimes used to

generate fuzz in order to find bugs efficiently.

There is previous research by Shen et al

[12]. that used fuzzing to detect ReDoS. In Shen

et al.'s research, fuzzing was performed in the

following three steps. The implementation of

algorithm follows the same general flow, but the

details are completely different.

Figure 4. Fuzzing process to detect ReDoS

- Seeding: the step where the initial

generation of the genetic algorithm is

determined from the given regular expression.

- Incubation: the step of iterating through

the generations of the genetic algorithm to

produce a string that takes more matching time.

- Attack: the step where the strings

generated by incubation are used to test whether

the matching time is high enough even under

conditions close to those of the real attack.

 (1) Seeding is the step where the given

regular expression is statically analyzed to

obtain the initial generation of the genetic

algorithm.

Let's observe the EDA and IDA structures.

You will see that the EDA structure and the

IDA structure have the following pair of states

(q_1, q_2) in common.

There are two different transitions from

q_1 with the same letter a.

- q_1 and q_2 can be transitioned with

the same letter b.

- q_2 can transition with the letter a.

Journal of Science and Technology on Information security

 No 1.CS (21) 2024 9

Figure 5. Seeding Phase

In a way, this pair of states is like a seed of

IDA or EDA structure. Adding a repeated string

on the string between these two states to the

initial generation, we expect the fuzzing to

efficiently increase the matching time.

The idea of statically analyzing regular

expressions to obtain strings that may cause

ReDoS vulnerabilities can be seen in the

research of Li et al [5]. However, that work was

the syntax direction analysis of regular

expressions, and there was a possibility of

missing parts of EDA or IDA structures. The

observation of state pairs is similar to that of

Linear Time Property in Chida et al.'s research

[13], but this observation is more detailed.

(2) Incubation is the step in which the

initial generation obtained by seeding is turned

into a string that takes longer to match using a

genetic algorithm.

If we find a string that takes enough

matching time at this stage, we move on to

attack to verify if the string is attackable. In

order to acceleration regular expression

matching, which will be explained on the next

page, the number of times a character is read

during the matching is used to determine if the

matching takes time or not, rather than the

actual matching time.

If no attackable string is found after

repeating the generation of the genetic

algorithm for the specified number of times, we

report that the regular expression is safe.

In this paper, the genetic algorithm uses

strings with repetition structures instead of

normal strings as genes. A string with repetition

structures is a sequence of a normal string w

and a string to be repeated $(w)^n$, and the

number of repetitions can be changed from

outside. This is a genetic programming

approach to make a string with structures that

can be changed by variables in a gene. In

addition, repetition structures are actually

encoded in the sequence, which makes mutation

and crossover in genetic algorithms efficient.

(3) Attack is the step to verify whether an

attack is actually possible by matching the

strings found in incubation while adjusting the

number of iterations.

As mentioned above, the genetic algorithm

uses strings with repetition structures, and we

apply this to determine whether the matching

time is exponential or polynomial.

First, assuming that the matching time

increases exponentially, we try to match the

number of repetitions as the logarithm of the

threshold. If the threshold is reached here, the

matching time is exponential. If not, assume

that the matching time is polynomial increasing

of order d and do the same. Repeating this

until d becomes 2, and if the threshold is

not reached until the end, we assume that it is

safe for this string and return to incubation.

Detecting ReDoS Tools

ReScue [12], SlowFuzz [14], RXXR2 [15],

Rexploiter [16], and NFAA [17] represent

significant advancements in the research of

mitigating Regular Expression Denial of

Service (ReDoS) vulnerabilities. ReScue

applies static analysis methodologies to

systematically detect regex patterns susceptible

to excessive backtracking, aiming to

preemptively identify and correct inefficiencies

before deployment. SlowFuzz adopts a

dynamic approach by employing fuzz testing,

generating extensive input variations to

empirically uncover performance bottlenecks

and potential vulnerabilities within regex

engines. RXXR2 integrates empirical testing

and static analysis to deliver a comprehensive

framework for identifying regex

vulnerabilities, enhancing detection precision

through rigorous evaluation. Rexploiter

emphasizes the generation of exploitative

attack strings, providing a practical lens

through the impact of identified vulnerabilities

can be assessed. NFAA (Nondeterministic

Finite Automata Analyzer), utilizes principles

Journal of Science and Technology on Information security

10 No 1.CS (21) 2024

from automata theory to analyze the

computational complexity of regex patterns,

ensuring they are devoid of performance-

degrading constructs. Collectively, these tools

not only advance the detection and mitigation

of ReDoS attacks but also contribute to the

broader field of software security by

integrating static and dynamic analysis

techniques with theoretical foundations,

offering a multifaceted approach to

safeguarding regex implementations. We will

use these tools for our research.

Figure 6. Choosing techniques based on detection

III. ATTACK ALGORITHM

 This paper introduces a algorithm to check

ReDoS vulnerability in the given regular

expression. You can find vulnerabilities in the

given regular expression and can obtain an

attack string to the vulnerability.

The ideal approach to regular expression

vulnerability detection involves a hybrid strategy

combining the strengths of both automata-based

[18] and fuzzing algorithms [12].

TABLE 1: COMPARATIONS BETWEEN AUTOMATON

AND FUZZING [11, 18]
 Automata-based Fuzzing

Pros - Fast detection

(no actual

matching).

- Theoretically

accurate

detection.

- Handles all

practical regular

expressions.

- Practical

vulnerability

detection (not just

theoretical)

Cons - State explosion

can make

detection slow.

- Not all practical

regular

expressions can

be handled

- Can erroneously

detect vulnerable

expressions as safe

- Detection takes

time due to actual

matching

First algorithm represents an attack pattern,

which is a string composed of fixed and

repeating parts. The repeating parts can be

repeated a variable number of times, determined

by a complexity level and a limit. The algorithm

ensures the adjusted count does not exceed the

maximum size limit for the generated string.

Finally, the algorithm provides methods to

return the string representation of the attack

pattern in various formats, allowing for different

styles based on the desired output (e.g.,

JavaScript, Python). The adjusted repetition

count and the resulting string representation

make this algorithm suitable for generating

attack patterns with variable lengths and

complexity levels.

Algorithm 1: Generating Attack Pattern

Input: A pump, a suffix and a count for the

pumps n

Output: An attack string pattern

begin

 function calculateFixedSize(pumps):

 fixedSize = 0

Journal of Science and Technology on Information security

 No 1.CS (21) 2024 11

 for pump in pumps:

 fixedSize = fixedSize +

pump.firstPart.sizeAsString

 fixedSize = fixedSize + suffix

 return fixedSize

function calculateRepeatSize(pumps):

 repeatSize = 0

 for pump in pumps:

 repeatSize = repeatSize +

pump.secondPart.sizeAsString

 return repeatSize

function attackPattern(complexity, limit,

maxSize):

 // Calculate fixed and repeat sizes

 fixedSize = calculateFixedSize(pumps)

 repeatSize = calculateRepeatSize(pumps)

 if complexity == "polynomial":

 maxRepetitions = min(ceil(pow(remainSteps

/ repeatSteps, 1 / degree)), floor((maxSize -

fixedSize) / repeatSize))

 else if complexity == "exponential":

 maxRepetitions = min(ceil(log(remainSteps /

repeatSteps) / log(2)), floor((maxSize -

fixedSize) / repeatSize))

 attackPattern = "s".repeat(maxRepetitions)

 return attackPattern

We introduced a concise and structured

description of the ReDoS attack based on

automaton. It emphasizes the class's role in

representing a witness for a regular expression

attack, including its ability to generate attack

strings and patterns based on the provided pump

pairs and suffix.

Algorithm 2: ReDoS based on Automaton

Input: a pre-pump or a pump, a suffix

Output: a list where the `n`-th element is an

attack string with `n` repetitions

begin

 function mapWitness[B](f: A => B):

Witness[B]

 newPumps = []

 for (pre, pump) in pumps:

 newPumps.append((pre.map(f),

pump.map(f)))

 newSuffix = suffix.map(f)

 return Witness(newPumps, newSuffix)

function buildAttack(n: Int): Seq[A]

 attack = []

 for (pre, pump) in pumps:

 attack.append(pre)

 for i in range(n):

 attack.append(pump)

 attack.append(suffix)

 return attack

function buildAttackPattern(n: Int)(implicit ev:

A =:= UChar): AttackPattern

 transformedPumps = []

 for (s, t) in pumps:

transformedPumps.append((UString.from(s.map

(ev)), UString.from(t.map(ev)), 0))

 return AttackPattern(transformedPumps,

suffix, n)

 We introduced the third algorithm to craft a

ReDoS attack string based on fuzzing

technique. It designed to translate a string with

embedded repeating patterns into a structured

Attack Pattern. It accomplishes this by iterating

through the string, identifying and extracting

repeating portions along with their associated

repetition counts and any preceding fixed parts.

These extracted repeating sections, known as

pumps, are then combined with the remaining

fixed parts (the suffix) to form the final Attack

Pattern. The process of generating attack strings

based on the identified repeating structure,

simplifying attack construction and enabling

developers to focus on the core attack logic

rather than the intricacies of manipulating

complex strings with repetition.

Algorithm 3: ReDoS based on fuzzing

Input: a repetition count n, a string seq

Output: attack string pattern

begin

 pumps <- create_new_sequence()

 str <- create_new_string_builder()

 pos <- 0

 while pos < size_of(seq):

 match seq[pos]:

 case Wrap(u):

Journal of Science and Technology on Information security

12 No 1.CS (21) 2024

 pos <- pos + 1

 str.append(as_string(u))

 case Repeat(m, size):

 pos <- pos + 1

 repeat <- n + m

 if repeat > 1:

 s <- create_UString(str.result())

 str.clear()

 pump <- map_slice(seq, pos, pos +

size, element => as_string(element))

 pump_string <- join(pump)

 t <- create_UString(pump_string)

 add_to_sequence(pumps, (s, t, m))

 pos <- pos + size

 suffix <- str.result()

 return create_AttackPattern(pumpResult,

suffix, n)

As shown in Figure 6, the algorithm is

assumed to be based on automata theory

(Checker.Automaton) at first and performs NFA

conversion, then falls back to the fuzzing

(Checker.Fuzz) if the size of the NFA exceeds

the threshold.

Algorithm 4: ReDoS detection based on

Automata theory and Fuzzing

Input: a source, flags, a pattern and params

Output: Result of Detection’s algorithm

begin

 maxNFASize = if params.checker ==

Checker.Auto then params.maxNFASize else

Integer.MAX_VALUE

 result = Try():

 if params.checker == Checker.Auto and

repeatCount(pattern) >=

params.maxRepeatCount:

 Checker.Fuzz

 else:

 Success(())

 complexity = if pattern.isConstant:

 Success(Iterator.empty)

 else:

 if params.checker == Checker.Auto and

pattern.size >= params.maxPatternSize:

 return Checker.Fuzz

 else:

 Success(())

 epsNFA =

EpsNFABuilder.build(pattern)

 orderedNFA =

epsNFA.toOrderedNFA(maxNFASize).rename(

).mapAlphabet(lambda x: x.head)

 return

AutomatonChecker.check(orderedNFA,

maxNFASize)

 for cs in result:

 for vul in cs:

 if vul is Vulnerable:

attack=vul.buildAttackPattern(params.recallLim

it, params.maxRecallStringSize)

 return

Diagnostics.Vulnerable(source, flags,

vul.toAttackComplexity(), attack, vul.hotspot,

Checker.Automaton)

 else if vul is Safe:

 return Diagnostics.Safe(source, flags,

vul.toAttackComplexity(), Checker.Automaton)

) ++ Iterator(Diagnostics.Safe(source,

flags, AttackComplexity.Safe(false),

Checker.Automaton))

)

IV. EXPERIMENT

TABLE 2: REGEX SETS FOR EVALUATION

Name Number Description

RegLib [19] 2,992

Online regex

examples from

RegExLib.com

Snort [20] 12,499

Regexes extracted

from the Snort

NIDS for data

packet filtering

Corpus [20] 13,597

Regexes from

scraped Python

projects

This research presents a comprehensive

evaluation of different techniques for detecting

Regular Expression Denial of Service (ReDoS)

vulnerabilities. The experiment utilizes a large

dataset of 29,088 regexes collected from Table

1, serving as a benchmark for testing the

effectiveness of various methods. Five

techniques are compared: Our technique,

Journal of Science and Technology on Information security

 No 1.CS (21) 2024 13

ReScue [14], SlowFuzz [14], RXXR2 [16] and

Rexploiter [17], and NFAA [18].

Each technique is evaluated by running it

on the dataset and assessing the success rate of

generating ReDoS strings.

All experiments are conducted on a high-

performance server with 24 cores Intel Xeon Gold

6226R, 64 GB RAM DDR4 ECC 2933 MHz and

Ubuntu 22.04 LTS. The study's comprehensive

approach and detailed analysis provide valuable

insights into the strengths and weaknesses of

different ReDoS detection methods, aiding

researchers and developers in choosing the most

appropriate tool for their needs.

We selected 227 samples containing ReDoS

vulnerabilities and conducted 10 experiments on

this chosen dataset. The results show that

ReSCUE and our technique exhibit the highest

number of identified vulnerable regexes,

indicating their effectiveness in detecting

potential vulnerabilities. However, the lack of

TP rate for these methods makes it difficult to

directly compare their accuracy. SlowFuzz

achieves a lower detection rate, has a

considerably higher TP rate (31.3%), suggesting

better precision. RXXR2 boasts a high TP rate

(67.8%) but suffers from a large number of false

positives, making it less reliable. Rexploiter

relatively low TP rate (1.9%), shows the highest

number of false positives, highlighting the

potential for inaccurate detection. NFAA does

not detect any vulnerabilities, indicating its

inadequacy in handling this type of

vulnerability. The experiments emphasizes the

importance of our technique research to develop

more accurate and reliable methods for

detecting and attacking regex vulnerabilities.

TABLE 3: THE OVERALL EVALUATION RESULTS

Technique Number

Vul

Number

FP

TP

Rate

Avg

Time

(s)

New

Technique

155 (68%) - - 0.6523

ReSCUE 179 (79%) - - 0.7154

SlowFuzz 99 (44%) 45 31.3% 0.5351

RXXR2 120 (53%) 57 68% 0.0034

Rexploiter 40 (18.6%) 2084 0.3512

NFAA 0 (0%) 712 N/A 2.5122

Summary 227 (100%)

V. CONCLUSION

This research presents a novel approach to

detect ReDoS vulnerabilities by combining the

strengths of both automata-based algorithms

and fuzzing techniques. We combined dynamic

and static analysis to detect and generate attack

strings for ReDoS vulnerabilities. This hybrid

approach aims to address the limitations of

individual methods, achieves a balance between

detection speed, accuracy, and attack string

generation effective.

The evaluation results demonstrate the

effectiveness of the proposed approach, detect a

significant number of vulnerabilities with a

reasonable accuracy. The implementation can

effectively identify ReDoS vulnerabilities in a

variety of scenarios, offer a valuable tool for

security researchers and developers. In future

research, we will focus on enhancing the detection

of ReDoS vulnerabilities based on the techniques

of automaton and fuzzing, and subsequently

generating more effective attack strings. Overall,

this research provides a promising solution for

effectively detecting ReDoS vulnerabilities and

contributes significantly to the field of regular

expression security.

REFERENCES

[1] OWASP (2010-02-10). "Regex Denial of

Service". Retrieved 2010-04-16.

[2] Son, D. T., Tram, N. T. K., & Thu, T. T. .

(2022). Machine learning approach detects

DDoS attacks. Journal of Science and

Technology on Information Security, 1(15),

102-108. https://doi.org/10.54654/isj.v1i15.850.

[3] Martin Berglund, Frank Drewes, Brink van der

Merwe. 2014. Analyzing Catastrophic

Backtracking Behavior in Practical Regular

Expression Matching. Electronic Proceedings
in Theoretical Computer Science 151(Proc.

AFL 2014).

https://en.wikipedia.org/wiki/OWASP
http://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
http://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS

Journal of Science and Technology on Information security

14 No 1.CS (21) 2024

[4] Efe Barla, Xin Du, James C. Davis. 2023.

Exploiting Input Sanitization for Regex Denial

of Service. Proceedings of the ACM/IEEE 44th

International Conference on Software

Engineering (ICSE) 2022.

https://arxiv.org/abs/2303.01996.

[5] "Backtracking in .NET regular expressions -

.NET". learn.microsoft.com. 11 August 2023.

When using System.Text.RegularExpressions to

process untrusted input, pass a timeout. A

malicious user can provide input to

RegularExpressions, causing a Denial-of-Service

attack. ASP.NET Core framework APIs that use

RegularExpressions pass a timeout.

[6] Li, Yeting, et al. "ReDoSHunter: A Combined Static

and Dynamic Approach for Regular Expression

DoS Detection." 30th USENIX Security

Symposium (USENIX Security 21). 2021.

[7] Davis, James C., Francisco Servant, and

Dongyoon Lee. 2021. "Using selective

memoization to defeat regular expression
denial of service (ReDoS)." 2021 IEEE

Symposium on Security and Privacy (SP), Los

Alamitos, CA, USA.

[8] Paul Wilton. Beginning JavaScript. John Wiley

& Sons, 2004.

[9] Pieter Hooimeijer, Benjamin Livshits, David

Molnar, Prateek Saxena, and Margus Veanes.

Fast and precise sanitizer analysis with BEK.

In USENIX Security Symposium, pages 1–16,

August 2011.

[10] https://en.wikipedia.org/wiki/Thompson's_cons

truction.

[11] Sugiyama, Satoshi, and Yasuhiko Minamide.

"Checking time linearity of regular expression

matching based on backtracking." Information

and Media Technologies 9.3 (2014): 222-232.

[12] Shen, Yuju, et al. "ReScue: crafting regular

expression DoS attacks." 2018 33rd

IEEE/ACM International Conference on

Automated Software Engineering (ASE).

IEEE, 2018.

[13] Chida, Nariyoshi, and Tachio Terauchi.

2020."Automatic repair of vulnerable regular

expressions." arXiv preprint arXiv:2010.12450.

[14] Theofilos Petsios, Jason Zhao, Angelos D

Keromytis, and Suman Jana. 2017. Slowfuzz:

Automated domain-independent detection of

algorithmic complexity vulnerabilities. In
Proceedings of the International Conference on

Computer and Communications Security (CCS

’17). 2155–2168.

https://doi.org/10.1145/3133956. 3134073.

[15] James Kirrage, Asiri Rathnayake, and Hayo

Thielecke. 2013. Static analysis for regular

expression denial-of-service attacks. In

Proceedings of the 7th International

Conference on Network and System Security

(NSS ’13). 135–148. https://doi.org/

10.1007/978-3-642-38631-2_11.

[16] Valentin Wüstholz, Oswaldo Olivo, Marijn JH

Heule, and Isil Dillig. 2017. Static detection of

DoS vulnerabilities in programs that use

regular expressions. In Proceedings of the

International Conference on Tools and

Algorithms for the Construction and Analysis

of Systems (TACAS ’17). 3–20.

https://doi.org/10.1007/ 978-3-662-54580-5_1.

[17] Nicolaas Weideman, Brink van der Merwe,

Martin Berglund, and Bruce Watson. 2016.

Analyzing matching time behavior of

backtracking regular expression matchers by

using ambiguity of NFA. In Proceedings of the

International Conference on Implementation

and Application of Automata (CIAA ’16). 322–

334. https: //doi.org/10.1007/978-3-319-40946-

7_27.

[18] Weber, Andreas, and Helmut Seidl. 1991. "On
the degree of ambiguity of finite automata."

Theoretical Computer Science 88.2 (1991):

325-349.

[19] Asiri Rathnayake and Hayo Thielecke. 2014.

Static analysis for regular expression

exponential runtime via substructural logics.

(2014). arXiv:arXiv:1405.7058.

[20] Carl Chapman and Kathryn T Stolee. 2016.

Exploring regular expression usage and context

in Python. In Proceedings of the 25th

International Symposium on Software Testing

and Analysis (ISSTA ’16). 282–293.

https://doi.org/10.1145/ 2931037.2931073.

https://arxiv.org/abs/2303.01996
http://learn.microsoft.com/
http://asp.net/
https://en.wikipedia.org/wiki/Thompson%27s_construction
https://en.wikipedia.org/wiki/Thompson%27s_construction
https://doi.org/10.1145/3133956.%203134073

Journal of Science and Technology on Information security

 No 1.CS (21) 2024 15

ABOUT THE AUTHOR

Nguyen Trung Dung

Workplace: Research Institute 486,

Command 86

Email: ntdtoanud2011@gmail.com

Education: 1996-2002: Engineer of

Information Security; 2006-2008:

Master of Information Security;

2011-2019: Doctor of Philosophy.

Recent research direction: information security,

information technology.

Tên tác giả: Nguyễn Trung Dũng

Cơ quan công tác: Viện nghiên cứu 486, Bộ Tư lệnh 86

Email: ntdtoanud2011@gmail.com

Quá trình đào tạo: 1996-2002: Kỹ sư chuyên ngành

ATTT; 2006-2008: Thạc sỹ chuyên ngành An toàn

thông tin; 2011-2019: Tiến sỹ.

Hướng nghiên cứu hiện nay: An toàn thông tin, công

nghệ thông tin, bảo mật thông tin.

Pham Van Toi

Workplace: Research Institute 486,

Command 86

Email: toiphamvp@gmail.com

Education: 2009-2015: Engineer of

automation systems; 2015-2019:

Doctor of Philosophy

Recent research direction: information security,

information technology.

Tên tác giả: Phạm Văn Tới

Cơ quan công tác: Viện nghiên cứu 486, Bộ Tư lệnh

86

Email: toiphamvp@gmail.com

Quá trình đào tạo: 2009-2015: Kỹ sư chuyên ngành các

hệ thống tự động hóa; 2015-2019: Tiến sỹ

Hướng nghiên cứu hiện nay: An toàn thông tin, công

nghệ thông tin, bảo mật thông tin.

Phung Minh Hieu

Workplace: Research Institute 486,

Command 86

Email: pmhieu22@gmail.com

Education: 2015-2020: Engineer of

Information Security; 2020-2022:

Master of Information Security

Recent research direction: information security,

information technology.

Tên tác giả: Phùng Minh Hiếu

Cơ quan công tác: Viện nghiên cứu 486, Bộ Tư lệnh 86

Email: pmhieu22@gmail.com

Quá trình đào tạo: 2015-2020: Kỹ sư An toàn thông tin;

2020-2022: Thạc sĩ An toàn thông tin

Hướng nghiên cứu hiện nay: An toàn thông tin, công

nghệ thông tin.

