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Abstract— Regular expressions, or regexes, 

have become an integral part of modern 

software development, seamlessly woven into 

the fabric of countless applications. From 

validating user input in web forms to parsing 

complex log files for data analysis, regexes are 

employed across a vast spectrum of tasks. Their 

ability to precisely define and match patterns 

within text makes them invaluable tools for 

tasks ranging from simple data extraction to 

sophisticated security measures. However, this 

widespread reliance on regexes also introduces 

a significant security vulnerability: ReDoS 

(Regular Expression Denial of Service) attacks. 

These attacks exploit the inherent complexity of 

regex matching by crafting malicious input that 

triggers an exponentially long processing time, 

effectively bringing the application to a 

standstill. The potential for ReDoS attacks 

highlights the crucial need for developers to 

exercise extreme caution when designing and 

implementing regex-based components within 

their applications. This paper explores the 

inherent ambiguity of regular expressions, 

fuzzing with static analysis and proposes a 

novel fuzzing technique to generate effective 

attack patterns. By analyzing the potential 

interpretations of ambiguous regex constructs, 

our method identifies and exploits weaknesses 

in software implementations that rely on regex 

for input validation. The proposed fuzzing 

algorithm generates test cases that 

systematically explore the ambiguity space, 

maximizing the likelihood of uncovering 

vulnerabilities related to unexpected regex 

behavior. This approach aims to enhance 

software security by proactively detecting and 

mitigating potential attack vectors stemming 

from the misinterpretation of regular 

expression patterns.  

Tóm tắt— Biểu thức chính quy (regex) là một 

phần không thể thiếu trong phát triển ứng dụng 

phần mềm, được tích hợp một cách liền mạch vào 

vô số ứng dụng. Biểu thức chính quy được sử dụng 

trong nhiều nhiệm vụ khác nhau từ xác thực đầu 

vào của người dùng ứng dụng web đến phân tích dữ 

liệu văn bản phức tạp. Tuy nhiên, sự phụ thuộc vào 

biểu thức chính quy cũng mang đến một lỗ hổng 

bảo mật nghiêm trọng như tấn công ReDoS 

(Regular Expression Denial of Service - Tấn công từ 

chối dịch vụ trên biểu thức chính quy). Tấn công 

ReDoS khai thác dựa trên sự phức tạp của việc so 

khớp biểu thức chính quy bằng cách tạo ra đầu vào 

độc hại để thời gian xử lý tăng theo cấp số mũ, 

khiến ứng dụng ngừng hoạt động. Mục đích của các 

cuộc tấn công ReDoS tập trung vào các nhà phát 

triển phần mềm khi thiết kế và triển khai các thành 

phần dựa trên biểu thức chính quy trong sản phẩm. 

Bài báo bao gồm thuật toán ambiguity của biểu 

thức chính quy, kỹ thuật fuzzing kết hợp với phân 

tích tĩnh, từ đó đề xuất một kỹ thuật mới để tạo ra 

các mẫu tấn công hiệu quả. Bằng cách phân tích 

cấu trúc ambiguity, nhóm tác giả đã xác định 

phương pháp và kỹ thuật khai thác điểm yếu trong 

cách triển khai phần mềm dựa vào biểu thức chính 

quy để xác thực đầu vào. Thuật toán đề xuất được 

thực nghiệm một cách có hệ thống, tối ưu hóa khả 

năng phát hiện các lỗ hổng liên quan đến hành vi 

trên biểu thức chính quy. Cách tiếp cận của bài báo 

nhằm tăng cường bảo mật phần mềm thông qua 

việc chủ động phát hiện và giảm thiểu các vectơ tấn 

công tiềm ẩn phát sinh từ việc hiểu sai cách sử dụng 

biểu thức chính quy. 

Keywords— regex; fuzzing; automaton; ambiguity; 

ReDoS. 
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I. INTRODUCTION  

Regular expressions (regex) are a powerful 

tool used for searching and manipulating text. 

They allow you to describe complex text 

patterns and use them to validate data, extract 
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information, or replace text. However, regex 

can also be a source of security vulnerabilities, 

particularly when used carelessly. One of the 

most common vulnerabilities is ReDoS 

(Regular Expression Denial of Service) [1, 2]. 

ReDoS occurs when a poorly designed regex 

has to process an input string that can trigger 

backtracking [3] when the regex engine tries 

various combinations to match the input string. 

In some cases, this backtracking can become 

extremely lengthy, leading to the consumption 

of significant system resources and causing the 

server to hang or become sluggish. 

ReDoS attacks typically target web 

applications where users can provide input to 

form fields or URL parameters. An attacker 

can craft a malicious input [4] that triggers 

backtracking in the application’s regex, 

resulting in a denial-of-service for legitimate 

users. This vulnerability has been 

demonstrated in various platforms, including 

.NET [5], where a single malicious input could 

paralyze applications. 

Preventing ReDoS attacks is a challenge, 

developers often struggle to identify vulnerable 

regexes and rewrite them to avoid exponential 

complexity. Additionally, implementing 

effective sanitizers to filter out malicious input 

requires understanding the intricate patterns that 

trigger worst-case behavior. While numerous 

research efforts have been dedicated to the 

detection and prevention of ReDoS attacks, a 

comprehensive understanding of attack chains 

that leverage ReDoS vulnerability discovery 

mechanisms remains unexplored. This paper 

leverages a combination of vulnerability 

analysis and detection techniques to construct a 

comprehensive attack chain specifically 

targeting ReDoS vulnerabilities. By 

meticulously analyzing the mechanics of 

ReDoS, we identify exploitable weaknesses and 

develop a methodology for crafting malicious 

input strings that trigger excessive backtracking 

in regex engines. This allows us to 

systematically evaluate the effectiveness of 

existing ReDoS detection mechanisms and 

propose novel countermeasures to mitigate the 

risks associated with this vulnerability. 

The contributions of this paper are 

summarized in three main points: 

- Exploring algorithms related to Regex and 

ReDoS attacks: Show the ambiguity inherent in 

regular expressions (Regex) to understand how 

they can be interpreted in multiple way; 

Exponential Degree Ambiguity [6]: Analyze the 

types of ambiguities in Regex that lead to 

exponential complexity in the Regex algorithm, 

which can be exploited for ReDoS attacks. 

Infinite Degree Ambiguity [6]: Investigate cases 

where Regex has infinite ambiguity, making it 

more difficult to analyze and predict the behavior 

of the Regex. Fuzzing with Static Analysis: 

Combine fuzzing with static analysis to generate 

input data strings that can trigger unexpected 

behavior in Regex; Apply the selective 

memorization technique developed by Davis et 

al. [7] to optimize Regex algorithm performance, 

particularly when handling large datasets. 

- Introduction a string generation algorithm 

for attacks: The paper introduces the new 

algorithm for generating attack string based on 

automata theory and fuzzing algorithm. 

- Implementation and evaluation: The 

paper details the implementation of the 

proposed algorithm and evaluates its 

performance on a dataset. 

II. RELATED WORK 

A regular expression is a text processing 

utility for programmers. Regular expressions 

are widely used in all kind of software, inside 

a lot of libraries from program languages. 

Since regular expressions are easy to get 

wrong [8], which may help attackers to bypass 

checks [9]. There are two ways to implement 

regular expression matching. One uses 

deterministic finite automaton (DFA), and 

another uses backtracking. Recent 

implementations like Go’s regexp or Rust’s 

regex use DFA like approach. However, 

implementations on many programming 

languages use the backtracking approach. 

When the regular expression matching is 

implemented based on the backtracking, it may 

take exponential or superlinear time 

complexity against an input string length. In 
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other words, a short string may invoke a long 

matching time to a regular expression. For 

example, the relation between matching times 

against /^(a|a)*$/ and input string lengths, 

shows extremely increasing matching time 

against input string length (Figure 1). 

 

Figure 1. Regular Expression’s execution time 

Ambiguity of Regular Expression 

A regular expression is ambiguous if there 

are multiple matching processes for one string. 

For example, /^(a|ab)(bc|c)$/ is ambiguous 

because there are two matching processes for 

the string 'abc'. 

A regular expression is ambiguous does not 

immediately mean that it is ReDoS vulnerable. 

In the previous example, it is obvious that the 

matching time will not explode because it has 

only finite ambiguity. However, there is a deep 

relationship between ReDoS vulnerability and 

ambiguity of regular expression. 

We show another example about an 

ambiguous regular expression with a repetition 

quantifier /^((a|ab)(bc|c))*$/. Specifically, 

giving the string 'abc'.repeat(30) + 'a' can 

invoke a very long matching time. In fact, the 

matching time complexity of the regular 

expression is exponential. The regular 

expression is ReDoS vulnerable. 

A regular expression (regex) is vulnerable to 

ReDoS (Regular Expression Denial of Service) 

attacks when it exhibits partial infinite 

ambiguity. This ambiguity arises from the 

presence of repetition constructs within the 

regex, allowing for repeated matching of certain 

sub-patterns. The combination of repetition and 

ambiguity creates a scenario where the engine 

can become trapped in an iterative backtracking 

process, attempting to explore all possible 

interpretations. As the backtracking process 

continues without reaching a conclusive match, 

the engine consumes an excessive amount of 

computational resources, ultimately leading to a 

denial of service condition. 

EDA and IDA 

We will proceed with NFA which is 

equivalent to the regular expression. However, 

we assume that the NFA is converted to reflect 

the regular expression structure exactly (the 

NFA constructed by Thompson construction 

[10] without any determinization or 

minimization). 

The ambiguity of a regular expression 

means that there are multiple ways to transition 

from one state to another in a given string on 

the NFA. 

Suppose that the ambiguous transition is in 

a loop of the NFA transition diagram. In this 

case, there are two transitions to return to the 

same state with the same string $w (Figure 2). 

This means that the regular expression has 

infinite ambiguity. The reason is that for a string 

$w^n$ with $w$ in $n$ order, there are $2^n$ 

ways to transition, depending on whether it 

chooses the above or the bottom transition for 

each $w$. 

 

Figure 2. The Transition of EDA Structure 

A structure in the transition diagram of NFA 

is called EDA (Exponential Degree Ambiguity) 

structure [6], and it is the cause of cases where 

the matching time becomes exponential. 

It is not only in the presence of EDA that 

regular expressions have infinite ambiguity. 

Suppose that there is an ambiguous transition 
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across two loops (Figure 3), the same string 

$w$ can transition around the first loop and the 

next loop, and can also transition between the 

first states of the two loops. 

 

Figure 3. The Transition of IDA Structure 

The string $w^n$, there are $n$ 

transitions between the two loops with $w$, 

so there are $n$ different ways to transition. 

This also means that the regular expression 

has infinite ambiguity. 

A structure in the transition diagram of NFA 

is called IDA (Infinite Degree Ambiguity) 

structure [6]. It is the cause of cases where the 

matching time is polynomial of the second or 

higher degree. 

 Automated Detection of ReDoS 

 Regular expressions (regexes) are often 

poorly tested and vulnerable to ReDoS attacks, 

which can cause denial of service by exploiting 

inefficient matching algorithms. While some 

regex engines offer limited mitigation through 

matching limits, these are not widely used and 

ineffective against attacks flooding a server with 

malicious regexes. To address this, automated 

tools for detecting ReDoS vulnerabilities are 

crucial. These tools can be static, analyze the 

regex structure for potential issues, or dynamic, 

actually running matches to identify 

problematic strings. Static analysis can have 

false positives and miss vulnerabilities related to 

backreferences [11]. Dynamic analysis is more 

accurate, but it is time-consuming and may miss 

vulnerabilities requiring specific input 

sequences. The ideal solution would be a 

comprehensive tool that combines both 

approaches to effectively identify and mitigate 

ReDoS vulnerabilities in regexes. 

Fuzzing 

Fuzzing is an automated software testing 

method that generates a large amount of input 

called "fuzz" and actually gives it to a program 

to check if it shows any problematic behavior 

(i.e. bug). In contrast to static analysis, where 

the program is not actually run, fuzzing can be 

considered as a kind of dynamic analysis, where 

the program is actually run. 

One of the features of fuzzing is that 

evolutionary computation methods such as 

genetic algorithms are sometimes used to 

generate fuzz in order to find bugs efficiently. 

There is previous research by Shen et al 

[12]. that used fuzzing to detect ReDoS. In Shen 

et al.'s research, fuzzing was performed in the 

following three steps. The implementation of 

algorithm follows the same general flow, but the 

details are completely different. 

 

Figure 4. Fuzzing process to detect ReDoS 

- Seeding: the step where the initial 

generation of the genetic algorithm is 

determined from the given regular expression. 

- Incubation: the step of iterating through 

the generations of the genetic algorithm to 

produce a string that takes more matching time. 

- Attack: the step where the strings 

generated by incubation are used to test whether 

the matching time is high enough even under 

conditions close to those of the real attack. 

 (1) Seeding is the step where the given 

regular expression is statically analyzed to 

obtain the initial generation of the genetic 

algorithm. 

Let's observe the EDA and IDA structures. 

You will see that the EDA structure and the 

IDA structure have the following pair of states 

$(q_1, q_2)$ in common. 

There are two different transitions from 

$q_1$ with the same letter $a$. 

- $q_1$ and $q_2$ can be transitioned with 

the same letter $b$. 

- $q_2$ can transition with the letter $a$. 
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Figure 5. Seeding Phase 

In a way, this pair of states is like a seed of 

IDA or EDA structure. Adding a repeated string 

on the string between these two states to the 

initial generation, we expect the fuzzing to 

efficiently increase the matching time. 

The idea of statically analyzing regular 

expressions to obtain strings that may cause 

ReDoS vulnerabilities can be seen in the 

research of Li et al [5]. However, that work was 

the syntax direction analysis of regular 

expressions, and there was a possibility of 

missing parts of EDA or IDA structures. The 

observation of state pairs is similar to that of 

Linear Time Property in Chida et al.'s research 

[13], but this observation is more detailed. 

(2) Incubation is the step in which the 

initial generation obtained by seeding is turned 

into a string that takes longer to match using a 

genetic algorithm. 

If we find a string that takes enough 

matching time at this stage, we move on to 

attack to verify if the string is attackable. In 

order to acceleration regular expression 

matching, which will be explained on the next 

page, the number of times a character is read 

during the matching is used to determine if the 

matching takes time or not, rather than the 

actual matching time. 

If no attackable string is found after 

repeating the generation of the genetic 

algorithm for the specified number of times, we 

report that the regular expression is safe. 

In this paper, the genetic algorithm uses 

strings with repetition structures instead of 

normal strings as genes. A string with repetition 

structures is a sequence of a normal string $w$ 

and a string to be repeated $(w)^n$, and the 

number of repetitions can be changed from 

outside. This is a genetic programming 

approach to make a string with structures that 

can be changed by variables in a gene. In 

addition, repetition structures are actually 

encoded in the sequence, which makes mutation 

and crossover in genetic algorithms efficient. 

(3) Attack is the step to verify whether an 

attack is actually possible by matching the 

strings found in incubation while adjusting the 

number of iterations. 

As mentioned above, the genetic algorithm 

uses strings with repetition structures, and we 

apply this to determine whether the matching 

time is exponential or polynomial. 

First, assuming that the matching time 

increases exponentially, we try to match the 

number of repetitions as the logarithm of the 

threshold. If the threshold is reached here, the 

matching time is exponential. If not, assume 

that the matching time is polynomial  increasing 

of order $d$ and do the same. Repeating this 

until $d$ becomes $2$, and if the threshold is 

not reached until the end, we assume that it is 

safe for this string and return to incubation. 

Detecting ReDoS Tools 

ReScue [12], SlowFuzz [14], RXXR2 [15], 

Rexploiter [16], and NFAA [17] represent 

significant advancements in the research of 

mitigating Regular Expression Denial of 

Service (ReDoS) vulnerabilities. ReScue 

applies static analysis methodologies to 

systematically detect regex patterns susceptible 

to excessive backtracking, aiming to 

preemptively identify and correct inefficiencies 

before deployment. SlowFuzz adopts a 

dynamic approach by employing fuzz testing, 

generating extensive input variations to 

empirically uncover performance bottlenecks 

and potential vulnerabilities within regex 

engines. RXXR2 integrates empirical testing 

and static analysis to deliver a comprehensive 

framework for identifying regex 

vulnerabilities, enhancing detection precision 

through rigorous evaluation. Rexploiter 

emphasizes the generation of exploitative 

attack strings, providing a practical lens 

through the impact of identified vulnerabilities 

can be assessed. NFAA ( Nondeterministic 

Finite Automata Analyzer), utilizes principles 
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from automata theory to analyze the 

computational complexity of regex patterns, 

ensuring they are devoid of performance-

degrading constructs. Collectively, these tools 

not only advance the detection and mitigation 

of ReDoS attacks but also contribute to the 

broader field of software security by 

integrating static and dynamic analysis 

techniques with theoretical foundations, 

offering a multifaceted approach to 

safeguarding regex implementations. We will 

use these tools for our research. 

 

Figure 6. Choosing techniques based on detection 

III. ATTACK ALGORITHM 

 This paper introduces a algorithm to check 

ReDoS vulnerability in the given regular 

expression. You can find vulnerabilities in the 

given regular expression and can obtain an 

attack string to the vulnerability. 

The ideal approach to regular expression 

vulnerability detection involves a hybrid strategy 

combining the strengths of both automata-based 

[18] and fuzzing algorithms [12]. 

TABLE 1: COMPARATIONS BETWEEN AUTOMATON 

AND FUZZING [11, 18] 
 Automata-based  Fuzzing  

Pros - Fast detection 

(no actual 

matching). 

- Theoretically 

accurate 

detection. 

- Handles all 

practical regular 

expressions. 

- Practical 

vulnerability 

detection (not just 

theoretical) 

Cons - State explosion 

can make 

detection slow. 

- Not all practical 

regular 

expressions can 

be handled 

- Can erroneously 

detect vulnerable 

expressions as safe 

- Detection takes 

time due to actual 

matching 

First algorithm represents an attack pattern, 

which is a string composed of fixed and 

repeating parts. The repeating parts can be 

repeated a variable number of times, determined 

by a complexity level and a limit. The algorithm 

ensures the adjusted count does not exceed the 

maximum size limit for the generated string. 

Finally, the algorithm provides methods to 

return the string representation of the attack 

pattern in various formats, allowing for different 

styles based on the desired output (e.g., 

JavaScript, Python). The adjusted repetition 

count and the resulting string representation 

make this algorithm suitable for generating 

attack patterns with variable lengths and 

complexity levels. 

Algorithm 1: Generating Attack Pattern 

Input: A pump, a suffix and a count for the 

pumps n 

Output: An attack string pattern 

begin 

  function calculateFixedSize(pumps): 

  fixedSize = 0 
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  for pump in pumps: 

    fixedSize = fixedSize + 

pump.firstPart.sizeAsString 

  fixedSize = fixedSize + suffix  

  return fixedSize 

 

function calculateRepeatSize(pumps): 

  repeatSize = 0 

  for pump in pumps: 

    repeatSize = repeatSize + 

pump.secondPart.sizeAsString 

  return repeatSize 

 

function attackPattern(complexity, limit, 

maxSize): 

  // Calculate fixed and repeat sizes 

  fixedSize = calculateFixedSize(pumps) 

  repeatSize = calculateRepeatSize(pumps) 

 

  if complexity == "polynomial": 

    maxRepetitions = min(ceil(pow(remainSteps 

/ repeatSteps, 1 / degree)), floor((maxSize - 

fixedSize) / repeatSize)) 

  else if complexity == "exponential": 

    maxRepetitions = min(ceil(log(remainSteps / 

repeatSteps) / log(2)), floor((maxSize - 

fixedSize) / repeatSize)) 

  attackPattern = "s".repeat(maxRepetitions) 

  return attackPattern 

We introduced a concise and structured 

description of the ReDoS attack based on 

automaton. It emphasizes the class's role in 

representing a witness for a regular expression 

attack, including its ability to generate attack 

strings and patterns based on the provided pump 

pairs and suffix. 

Algorithm 2: ReDoS based on Automaton 

Input: a pre-pump or a pump, a suffix 

Output: a list where the `n`-th element is an 

attack string with `n` repetitions 

begin 

  function mapWitness[B](f: A => B): 

Witness[B] 

  newPumps = [] 

  for (pre, pump) in pumps: 

    newPumps.append((pre.map(f), 

pump.map(f))) 

 

  newSuffix = suffix.map(f) 

 

  return Witness(newPumps, newSuffix) 

 

function buildAttack(n: Int): Seq[A] 

  attack = [] 

 

  for (pre, pump) in pumps: 

    attack.append(pre) 

    for i in range(n): 

      attack.append(pump) 

  attack.append(suffix) 

  return attack 

 

function buildAttackPattern(n: Int)(implicit ev: 

A =:= UChar): AttackPattern 

  transformedPumps = [] 

  for (s, t) in pumps: 

    

transformedPumps.append((UString.from(s.map

(ev)), UString.from(t.map(ev)), 0)) 

 

  return AttackPattern(transformedPumps, 

suffix, n) 

 We introduced the third algorithm to craft a 

ReDoS attack string based on fuzzing 

technique. It designed to translate a string with 

embedded repeating patterns into a structured 

Attack Pattern. It accomplishes this by iterating 

through the string, identifying and extracting 

repeating portions along with their associated 

repetition counts and any preceding fixed parts. 

These extracted repeating sections, known as 

pumps, are then combined with the remaining 

fixed parts (the suffix) to form the final Attack 

Pattern. The process of generating attack strings 

based on the identified repeating structure, 

simplifying attack construction and enabling 

developers to focus on the core attack logic 

rather than the intricacies of manipulating 

complex strings with repetition. 

Algorithm 3: ReDoS based on fuzzing 

Input: a repetition count n, a string seq 

Output: attack string pattern 

begin  

  pumps <- create_new_sequence() 

  str <- create_new_string_builder() 

 

  pos <- 0 

 

  while pos < size_of(seq): 

    match seq[pos]: 

        case Wrap(u): 
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            pos <- pos + 1 

            str.append(as_string(u)) 

        case Repeat(m, size): 

            pos <- pos + 1 

            repeat <- n + m 

            if repeat > 1: 

                s <- create_UString(str.result()) 

                str.clear() 

                pump <- map_slice(seq, pos, pos + 

size,   element => as_string(element)) 

                pump_string <- join(pump) 

                t <- create_UString(pump_string) 

                add_to_sequence(pumps, (s, t, m)) 

                pos <- pos + size 

 

  suffix <- str.result() 

 

  return create_AttackPattern(pumpResult, 

suffix, n) 

As shown in Figure 6, the algorithm is 

assumed to be based on automata theory 

(Checker.Automaton) at first and performs NFA 

conversion, then falls back to the fuzzing 

(Checker.Fuzz) if the size of the NFA exceeds 

the threshold. 

Algorithm 4: ReDoS detection based on 

Automata theory and Fuzzing 

Input: a source, flags, a pattern and params 

Output: Result of Detection’s algorithm 

begin  

    maxNFASize = if params.checker == 

Checker.Auto then params.maxNFASize else 

Integer.MAX_VALUE 

 

    result = Try(): 

        if params.checker == Checker.Auto and 

repeatCount(pattern) >= 

params.maxRepeatCount: 

            Checker.Fuzz 

        else: 

            Success(()) 

 

        complexity = if pattern.isConstant: 

            Success(Iterator.empty) 

        else: 

            if params.checker == Checker.Auto and 

pattern.size >= params.maxPatternSize: 

                return Checker.Fuzz 

            else: 

                Success(()) 

 

            epsNFA = 

EpsNFABuilder.build(pattern) 

            orderedNFA = 

epsNFA.toOrderedNFA(maxNFASize).rename(

).mapAlphabet(lambda x: x.head) 

            return 

AutomatonChecker.check(orderedNFA, 

maxNFASize) 

 

  for cs in result: 

       for vul in cs: 

              if vul is Vulnerable: 

        

attack=vul.buildAttackPattern(params.recallLim

it, params.maxRecallStringSize) 

                return 

Diagnostics.Vulnerable(source, flags, 

vul.toAttackComplexity(), attack, vul.hotspot, 

Checker.Automaton) 

              else if vul is Safe: 

                return Diagnostics.Safe(source, flags, 

vul.toAttackComplexity(), Checker.Automaton) 

            ) ++ Iterator(Diagnostics.Safe(source, 

flags, AttackComplexity.Safe(false), 

Checker.Automaton)) 

        ) 

IV. EXPERIMENT 

TABLE 2: REGEX SETS FOR EVALUATION 

Name Number Description 

RegLib [19] 2,992 

Online regex 

examples from 

RegExLib.com 

Snort [20] 12,499 

Regexes extracted 

from the Snort 

NIDS for data 

packet filtering 

Corpus [20] 13,597 

Regexes from 

scraped Python 

projects 

This research presents a comprehensive 

evaluation of different techniques for detecting 

Regular Expression Denial of Service (ReDoS) 

vulnerabilities. The experiment utilizes a large 

dataset of 29,088 regexes collected from Table 

1, serving as a benchmark for testing the 

effectiveness of various methods. Five 

techniques are compared: Our technique, 
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ReScue [14], SlowFuzz [14], RXXR2 [16] and 

Rexploiter [17], and NFAA [18]. 

Each technique is evaluated by running it 

on the dataset and assessing the success rate of 

generating ReDoS strings.  

All experiments are conducted on a high-

performance server with 24 cores Intel Xeon Gold 

6226R, 64 GB RAM DDR4 ECC 2933 MHz and 

Ubuntu 22.04 LTS. The study's comprehensive 

approach and detailed analysis provide valuable 

insights into the strengths and weaknesses of 

different ReDoS detection methods, aiding 

researchers and developers in choosing the most 

appropriate tool for their needs. 

We selected 227 samples containing ReDoS 

vulnerabilities and conducted 10 experiments on 

this chosen dataset. The results show that  

ReSCUE and our technique exhibit the highest 

number of identified vulnerable regexes, 

indicating their effectiveness in detecting 

potential vulnerabilities. However, the lack of 

TP rate for these methods makes it difficult to 

directly compare their accuracy. SlowFuzz 

achieves a lower detection rate, has a 

considerably higher TP rate (31.3%), suggesting 

better precision. RXXR2 boasts a high TP rate 

(67.8%) but suffers from a large number of false 

positives, making it less reliable. Rexploiter 

relatively low TP rate (1.9%), shows the highest 

number of false positives, highlighting the 

potential for inaccurate detection. NFAA does 

not detect any vulnerabilities, indicating its 

inadequacy in handling this type of 

vulnerability. The experiments emphasizes the 

importance of our technique research to develop 

more accurate and reliable methods for 

detecting and attacking regex vulnerabilities. 

TABLE 3: THE OVERALL EVALUATION RESULTS 

Technique Number 

Vul 

Number 

FP 

TP 

Rate 

Avg 

Time 

(s) 

New 

Technique 

155 (68%) - - 0.6523 

ReSCUE 179 (79%) - - 0.7154 

SlowFuzz 99 (44%) 45 31.3% 0.5351 

RXXR2 120 (53%) 57 68% 0.0034 

Rexploiter 40 (18.6%) 2084  0.3512 

NFAA 0 (0%) 712 N/A 2.5122 

Summary  227 (100%) 

V. CONCLUSION 

This research presents a novel approach to 

detect ReDoS vulnerabilities by combining the 

strengths of both automata-based algorithms 

and fuzzing techniques. We combined dynamic 

and static analysis to detect and generate attack 

strings for ReDoS vulnerabilities. This hybrid 

approach aims to address the limitations of 

individual methods, achieves a balance between 

detection speed, accuracy, and attack string 

generation effective. 

The evaluation results demonstrate the 

effectiveness of the proposed approach, detect a 

significant number of vulnerabilities with a 

reasonable accuracy. The implementation can 

effectively identify ReDoS vulnerabilities in a 

variety of scenarios, offer a valuable tool for 

security researchers and developers. In future 

research, we will focus on enhancing the detection 

of ReDoS vulnerabilities based on the techniques 

of automaton and fuzzing, and subsequently 

generating more effective attack strings. Overall, 

this research provides a promising solution for 

effectively detecting ReDoS vulnerabilities and 

contributes significantly to the field of regular 

expression security. 
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