Journal of Science and Technology on Information security

Regular expression attack technique on
ReDoS vulnerability

Ol: https://doi.org/10.54654/isj.v1i21.1030

Nguyen Trung Dung, Pham Van Toi, Phung Minh Hieu

Abstract— Regular expressions, or regexes,
have become an integral part of modern
software development, seamlessly woven into
the fabric of countless applications. From
validating user input in web forms to parsing
complex log files for data analysis, regexes are
employed across a vast spectrum of tasks. Their
ability to precisely define and match patterns
within text makes them invaluable tools for
tasks ranging from simple data extraction to
sophisticated security measures. However, this
widespread reliance on regexes also introduces
a significant security vulnerability: ReDoS
(Regular Expression Denial of Service) attacks.
These attacks exploit the inherent complexity of
regex matching by crafting malicious input that
triggers an exponentially long processing time,
effectively bringing the application to a
standstill. The potential for ReDoS attacks
highlights the crucial need for developers to
exercise extreme caution when designing and
implementing regex-based components within
their applications. This paper explores the
inherent ambiguity of regular expressions,
fuzzing with static analysis and proposes a
novel fuzzing technique to generate effective
attack patterns. By analyzing the potential
interpretations of ambiguous regex constructs,
our method identifies and exploits weaknesses
in software implementations that rely on regex
for input validation. The proposed fuzzing
algorithm  generates  test cases that
systematically explore the ambiguity space,
maximizing the likelihood of uncovering
vulnerabilities related to unexpected regex
behavior. This approach aims to enhance
software security by proactively detecting and
mitigating potential attack vectors stemming
from the misinterpretation of regular
expression patterns.

This manuscript is received on April 16, 2024. It is
commented on May 22, 2024 and is accepted on June 10,
2024 by the first reviewer. It is commented on May 21, 2024
and is accepted on June 14, 2024 by the second reviewer.

Tom tit— Biéu thirc chinh quy (regex) 13 mét
phin khong thé thiéu trong phat trién Wng dung
phian mém, dwgc tich hgp mét cich lién mach vao
vo s6 wng dung. Biéu thirc chinh quy dworc sir dung
trong nhiéu nhiém vu khac nhau tir xic thwe dau
vao ciia ngudi ding timg dung web dén phan tich di
liéu viin ban phirc tap. Tuy nhién, sw phu thudc vao
biéu thitc chinh quy ciing mang dén mdt 15 hong
bao mat nghiém trong nhuw tin céng ReDoS
(Regular Expression Denial of Service - T4n cong tir
chéi dich vu trén biéu thirc chinh quy). T4n cong
ReDoS khai thac dwa trén sy phirc tap cia viéc so
khép biéu thirc chinh quy bang cach tao ra dau vao
doc hai dé thoi gian xir ly tang theo cap s6 mi,
Khién ung dung ngirng hoat dong. Muc dich ciia cac
cudc tin cong ReDoS tap trung vao ciac nha phat
trién phan mém khi thiét ké va trién khai cic thanh
phan dua trén bleu thirc chinh quy trong san pham
Bai bao bao gom thuit toan ambiguity ciia biéu
thirc chinh quy, k¥ thuét fuzzing két hop véi phan
tich tinh, tir d6 dé xuat mét ky thuit méi dé tao ra
cac miu tin cong hiéu qua. Bing cich phéan tich
ciu tric ambiguity, nhom tac gia da xac dinh
phuong phzip va k}"f thuﬁt Kkhai thac diém yéu trong
cach trién khai phan mém dua vao biéu thirc chinh
quy dé xac thue dau vao. Thuét toan dé xuat duge
thue nghiém mét cich cé h¢ thong, tdi wu héa kha
ning phat hién cac 16 hong lién quan dén hanh vi
trén biéu thirc chinh quy. Cach tiép cﬁn cua bai bao
nham tang cwong bao mat phan mém thong qua
viéc chi dong phat hién va giam thiéu cac vecto tin
cong tiém 4n phat sinh tir viéc hiéu sai cach sir dung
biéu thirc chinh quy.

Keywords— regex; fuzzing; automaton; ambiguity;
ReDosS.

Tir khéa— biéu thﬁc_)chl’nh quy; ky thudt fuzzing;
automaton; ambiguity; 16 hang ReDoS.

|. INTRODUCTION

Regular expressions (regex) are a powerful
tool used for searching and manipulating text.
They allow you to describe complex text
patterns and use them to validate data, extract

No 1.CS (21) 2024 5



Journal of Science and Technology on Information security

information, or replace text. However, regex
can also be a source of security vulnerabilities,
particularly when used carelessly. One of the
most common vulnerabilities is ReDoS
(Regular Expression Denial of Service) [1, 2].
ReDoS occurs when a poorly designed regex
has to process an input string that can trigger
backtracking [3] when the regex engine tries
various combinations to match the input string.
In some cases, this backtracking can become
extremely lengthy, leading to the consumption
of significant system resources and causing the
server to hang or become sluggish.

ReDoS attacks typically target web
applications where users can provide input to
form fields or URL parameters. An attacker
can craft a malicious input [4] that triggers
backtracking in the application’s regex,
resulting in a denial-of-service for legitimate
users.  This  vulnerability = has  been
demonstrated in various platforms, including
.NET [5], where a single malicious input could
paralyze applications.

Preventing ReDoS attacks is a challenge,
developers often struggle to identify vulnerable
regexes and rewrite them to avoid exponential
complexity. Additionally, implementing
effective sanitizers to filter out malicious input
requires understanding the intricate patterns that
trigger worst-case behavior. While numerous
research efforts have been dedicated to the
detection and prevention of ReDoS attacks, a
comprehensive understanding of attack chains
that leverage ReDoS vulnerability discovery
mechanisms remains unexplored. This paper
leverages a combination of vulnerability
analysis and detection techniques to construct a
comprehensive  attack chain  specifically
targeting ReDoS vulnerabilities. By
meticulously analyzing the mechanics of
ReDoS, we identify exploitable weaknesses and
develop a methodology for crafting malicious
input strings that trigger excessive backtracking
in regex engines. This allows us to
systematically evaluate the effectiveness of
existing ReDoS detection mechanisms and
propose novel countermeasures to mitigate the
risks associated with this vulnerability.

6 No 1.CS (21) 2024

The contributions of this
summarized in three main points:

paper are

- Exploring algorithms related to Regex and
ReDoS attacks: Show the ambiguity inherent in
regular expressions (Regex) to understand how
they can be interpreted in multiple way;
Exponential Degree Ambiguity [6]: Analyze the
types of ambiguities in Regex that lead to
exponential complexity in the Regex algorithm,
which can be exploited for ReDoS attacks.
Infinite Degree Ambiguity [6]: Investigate cases
where Regex has infinite ambiguity, making it
more difficult to analyze and predict the behavior
of the Regex. Fuzzing with Static Analysis:
Combine fuzzing with static analysis to generate
input data strings that can trigger unexpected
behavior in Regex; Apply the selective
memorization technique developed by Davis et
al. [7] to optimize Regex algorithm performance,
particularly when handling large datasets.

- Introduction a string generation algorithm
for attacks: The paper introduces the new
algorithm for generating attack string based on
automata theory and fuzzing algorithm.

- Implementation and evaluation: The
paper details the implementation of the
proposed algorithm and evaluates its
performance on a dataset.

Il. RELATED WORK

A regular expression is a text processing
utility for programmers. Regular expressions
are widely used in all kind of software, inside
a lot of libraries from program languages.
Since regular expressions are easy to get
wrong [8], which may help attackers to bypass
checks [9]. There are two ways to implement
regular expression matching. One uses
deterministic finite automaton (DFA), and
another uses backtracking. Recent
implementations like Go’s regexp or Rust’s
regex use DFA like approach. However,
implementations on many programming
languages use the backtracking approach.

When the regular expression matching is
implemented based on the backtracking, it may
take exponential or superlinear time
complexity against an input string length. In



other words, a short string may invoke a long
matching time to a regular expression. For
example, the relation between matching times
against /"(ala)*$/ and input string lengths,
shows extremely increasing matching time
against input string length (Figure 1).

Execution time in

/~(ala)*$/.exec('a'.repeat(n) + 'b')
[Te]

—

o~
—
[=}]

[{=]

execution time (sec)

o™

o

1 8 15 22 29
repetition count

Figure 1. Regular Expression’s execution time
Ambiguity of Regular Expression

A regular expression is ambiguous if there
are multiple matching processes for one string.
For example, /"(alab)(bc|c)$/ is ambiguous
because there are two matching processes for
the string "abc'.

A regular expression is ambiguous does not
immediately mean that it is ReDoS vulnerable.
In the previous example, it is obvious that the
matching time will not explode because it has
only finite ambiguity. However, there is a deep
relationship between ReDoS vulnerability and
ambiguity of regular expression.

We show another example about an
ambiguous regular expression with a repetition
quantifier  /~((alab)(bc|c))*$/.  Specifically,
giving the string ‘abc'.repeat(30) + 'a' can
invoke a very long matching time. In fact, the
matching time complexity of the regular
expression is exponential. The regular
expression is ReDoS vulnerable.

A regular expression (regex) is vulnerable to
ReDoS (Regular Expression Denial of Service)
attacks when it exhibits partial infinite
ambiguity. This ambiguity arises from the
presence of repetition constructs within the
regex, allowing for repeated matching of certain
sub-patterns. The combination of repetition and
ambiguity creates a scenario where the engine

Journal of Science and Technology on Information security

can become trapped in an iterative backtracking
process, attempting to explore all possible
interpretations. As the backtracking process
continues without reaching a conclusive match,
the engine consumes an excessive amount of
computational resources, ultimately leading to a
denial of service condition.

EDA and IDA

We will proceed with NFA which is
equivalent to the regular expression. However,
we assume that the NFA is converted to reflect
the regular expression structure exactly (the
NFA constructed by Thompson construction
[10] without any  determinization  or
minimization).

The ambiguity of a regular expression
means that there are multiple ways to transition
from one state to another in a given string on
the NFA.

Suppose that the ambiguous transition is in
a loop of the NFA transition diagram. In this
case, there are two transitions to return to the
same state with the same string $w (Figure 2).
This means that the regular expression has
infinite ambiguity. The reason is that for a string
$w”n$ with $w$ in $n$ order, there are $2"n$
ways to transition, depending on whether it
chooses the above or the bottom transition for
each $ws.

w

w
Figure 2. The Transition of EDA Structure

A structure in the transition diagram of NFA
is called EDA (Exponential Degree Ambiguity)
structure [6], and it is the cause of cases where
the matching time becomes exponential.

It is not only in the presence of EDA that
regular expressions have infinite ambiguity.
Suppose that there is an ambiguous transition

No 1.CS (21) 2024 7



Journal of Science and Technology on Information security

across two loops (Figure 3), the same string
$ws$ can transition around the first loop and the
next loop, and can also transition between the
first states of the two loops.

Figure 3. The Transition of IDA Structure

The string $w”n$, there are $n$
transitions between the two loops with $w$,
so there are $n$ different ways to transition.
This also means that the regular expression
has infinite ambiguity.

A structure in the transition diagram of NFA
is called IDA (Infinite Degree Ambiguity)
structure [6]. It is the cause of cases where the
matching time is polynomial of the second or
higher degree.

Automated Detection of ReDoS

Regular expressions (regexes) are often
poorly tested and vulnerable to ReDoS attacks,
which can cause denial of service by exploiting
inefficient matching algorithms. While some
regex engines offer limited mitigation through
matching limits, these are not widely used and
ineffective against attacks flooding a server with
malicious regexes. To address this, automated
tools for detecting ReDoS vulnerabilities are
crucial. These tools can be static, analyze the
regex structure for potential issues, or dynamic,
actually  running matches to identify
problematic strings. Static analysis can have
false positives and miss vulnerabilities related to
backreferences [11]. Dynamic analysis is more
accurate, but it is time-consuming and may miss

vulnerabilities  requiring  specific  input
sequences. The ideal solution would be a
comprehensive tool that combines both

approaches to effectively identify and mitigate
ReDoS vulnerabilities in regexes.

Fuzzing

Fuzzing is an automated software testing
method that generates a large amount of input
called "fuzz" and actually gives it to a program

8 No 1.CS (21) 2024

to check if it shows any problematic behavior
(i.e. bug). In contrast to static analysis, where
the program is not actually run, fuzzing can be
considered as a kind of dynamic analysis, where
the program is actually run.

One of the features of fuzzing is that
evolutionary computation methods such as
genetic algorithms are sometimes used to
generate fuzz in order to find bugs efficiently.

There is previous research by Shen et al
[12]. that used fuzzing to detect ReDoS. In Shen
et al.'s research, fuzzing was performed in the
following three steps. The implementation of
algorithm follows the same general flow, but the
details are completely different.

Seeding Incubation Attack

Figure 4. Fuzzing process to detect ReDoS

- Seeding: the step where the initial
generation of the genetic algorithm is
determined from the given regular expression.

- Incubation: the step of iterating through
the generations of the genetic algorithm to
produce a string that takes more matching time.

- Attack: the step where the strings
generated by incubation are used to test whether
the matching time is high enough even under
conditions close to those of the real attack.

(1) Seeding is the step where the given
regular expression is statically analyzed to
obtain the initial generation of the genetic
algorithm.

Let's observe the EDA and IDA structures.
You will see that the EDA structure and the
IDA structure have the following pair of states
$(g_1, g_2)$ in common.

There are two different transitions from
$g_1$ with the same letter $a$.

- $g_1%$ and $g_2$ can be transitioned with
the same letter $b3$.

- $q_2$ can transition with the letter $a$.



Journal of Science and Technology on Information security

Figure 5. Seeding Phase

In a way, this pair of states is like a seed of
IDA or EDA structure. Adding a repeated string
on the string between these two states to the
initial generation, we expect the fuzzing to
efficiently increase the matching time.

The idea of statically analyzing regular
expressions to obtain strings that may cause
ReDoS vulnerabilities can be seen in the
research of Li et al [5]. However, that work was
the syntax direction analysis of regular
expressions, and there was a possibility of
missing parts of EDA or IDA structures. The
observation of state pairs is similar to that of
Linear Time Property in Chida et al.'s research
[13], but this observation is more detailed.

(2) Incubation is the step in which the
initial generation obtained by seeding is turned
into a string that takes longer to match using a
genetic algorithm.

If we find a string that takes enough
matching time at this stage, we move on to
attack to verify if the string is attackable. In
order to acceleration regular expression
matching, which will be explained on the next
page, the number of times a character is read
during the matching is used to determine if the
matching takes time or not, rather than the
actual matching time.

If no attackable string is found after
repeating the generation of the genetic
algorithm for the specified number of times, we
report that the regular expression is safe.

In this paper, the genetic algorithm uses
strings with repetition structures instead of
normal strings as genes. A string with repetition
structures is a sequence of a normal string $w$
and a string to be repeated $(w)*n$, and the
number of repetitions can be changed from
outside. This is a genetic programming
approach to make a string with structures that

can be changed by variables in a gene. In
addition, repetition structures are actually
encoded in the sequence, which makes mutation
and crossover in genetic algorithms efficient.

(3) Attack is the step to verify whether an
attack is actually possible by matching the
strings found in incubation while adjusting the
number of iterations.

As mentioned above, the genetic algorithm
uses strings with repetition structures, and we
apply this to determine whether the matching
time is exponential or polynomial.

First, assuming that the matching time
increases exponentially, we try to match the
number of repetitions as the logarithm of the
threshold. If the threshold is reached here, the
matching time is exponential. If not, assume
that the matching time is polynomial increasing
of order $d$ and do the same. Repeating this
until $d$ becomes $2$, and if the threshold is
not reached until the end, we assume that it is
safe for this string and return to incubation.

Detecting ReDoS Tools

ReScue [12], SlowFuzz [14], RXXR2 [15],
Rexploiter [16], and NFAA [17] represent
significant advancements in the research of
mitigating Regular Expression Denial of
Service (ReDoS) vulnerabilities. ReScue
applies static analysis methodologies to
systematically detect regex patterns susceptible
to excessive backtracking, aiming to
preemptively identify and correct inefficiencies
before deployment. SlowFuzz adopts a
dynamic approach by employing fuzz testing,
generating extensive input variations to
empirically uncover performance bottlenecks
and potential vulnerabilities within regex
engines. RXXR2 integrates empirical testing
and static analysis to deliver a comprehensive
framework for identifying regex
vulnerabilities, enhancing detection precision
through  rigorous evaluation.  Rexploiter
emphasizes the generation of exploitative
attack strings, providing a practical lens
through the impact of identified vulnerabilities
can be assessed. NFAA ( Nondeterministic
Finite Automata Analyzer), utilizes principles

No 1.CS (21) 2024 9



Journal of Science and Technology on Information security

from automata theory to analyze the
computational complexity of regex patterns,
ensuring they are devoid of performance-
degrading constructs. Collectively, these tools
not only advance the detection and mitigation
of ReDoS attacks but also contribute to the
broader field of software security by
integrating static and dynamic analysis
techniques  with  theoretical foundations,
offering a  multifaceted approach to
safeguarding regex implementations. We will
use these tools for our research.

Yes

Sum of {n.m} repetition

" (ala) {3018

Yes
A

Expanded pattern size ==

com | org | int | net | ...

No
Is it possible to convert to
automaton

“(a {2, )18

Yes

Size of transitions >=

“(ala)*s
tatats

Use the algorithm based on

. Use the fuzzing algorithm
antomata theory =T

Figure 6. Choosing techniques based on detection

10 No 1.CS (21) 2024

I1l. ATTACK ALGORITHM

This paper introduces a algorithm to check
ReDoS vulnerability in the given regular
expression. You can find vulnerabilities in the
given regular expression and can obtain an
attack string to the vulnerability.

The ideal approach to regular expression
vulnerability detection involves a hybrid strategy
combining the strengths of both automata-based
[18] and fuzzing algorithms [12].

TABLE 1: COMPARATIONS BETWEEN AUTOMATON
AND FUZZING [11, 18]

Automata-based

Fuzzing

Pros - Fast detection
(no actual
matching).

- Theoretically
accurate

- Handles all
practical regular
expressions.
- Practical
vulnerability

detection. detection (not just

theoretical)

Cons - State explosion | - Can erroneously
can make | detect vulnerable
detection slow. expressions as safe

- Not all practical | - Detection takes
regular time due to actual
expressions  can | matching

be handled

First algorithm represents an attack pattern,
which is a string composed of fixed and
repeating parts. The repeating parts can be
repeated a variable number of times, determined
by a complexity level and a limit. The algorithm
ensures the adjusted count does not exceed the
maximum size limit for the generated string.
Finally, the algorithm provides methods to
return the string representation of the attack
pattern in various formats, allowing for different
styles based on the desired output (e.g.,
JavaScript, Python). The adjusted repetition
count and the resulting string representation
make this algorithm suitable for generating
attack patterns with variable lengths and
complexity levels.

Algorithm 1: Generating Attack Pattern

Input: A pump, a suffix and a count for the
pumps n
Output: An attack string pattern
begin
function calculateFixedSize(pumps):
fixedSize =0




Journal of Science and Technology on Information security

for pump in pumps:
fixedSize =
pump.firstPart.sizeAsString
fixedSize = fixedSize + suffix
return fixedSize

fixedSize +

function calculateRepeatSize(pumps):
repeatSize = 0
for pump in pumps:
repeatSize = repeatSize +
pump.secondPart.sizeAsString
return repeatSize

function

maxSize):
/I Calculate fixed and repeat sizes
fixedSize = calculateFixedSize(pumps)
repeatSize = calculateRepeatSize(pumps)

attackPattern(complexity, limit,

if complexity == "polynomial:
maxRepetitions = min(ceil(pow(remainSteps
/| repeatSteps, 1 / degree)), floor((maxSize -
fixedSize) / repeatSize))
else if complexity == "exponential™:
maxRepetitions = min(ceil(log(remainSteps /
repeatSteps) / log(2)), floor((maxSize -
fixedSize) / repeatSize))
attackPattern = "s".repeat(maxRepetitions)
return attackPattern

function buildAttack(n: Int): Seq[A]
attack =[]

for (pre, pump) in pumps:
attack.append(pre)
for i in range(n):
attack.append(pump)
attack.append(suffix)
return attack

function buildAttackPattern(n: Int)(implicit ev:
A =:= UChar): AttackPattern
transformedPumps =[]
for (s, t) in pumps:

transformedPumps.append((UString.from(s.map
(ev)), UString.from(t.map(ev)), 0))

return
suffix, n)

AttackPattern(transformedPumps,

We introduced a concise and structured
description of the ReDoS attack based on
automaton. It emphasizes the class's role in
representing a witness for a regular expression
attack, including its ability to generate attack
strings and patterns based on the provided pump
pairs and suffix.

Algorithm 2: ReDoS based on Automaton

Input: a pre-pump or a pump, a suffix
Output: a list where the "'n’-th element is an
attack string with "n" repetitions
begin
function
Witness[B]
newPumps =[]
for (pre, pump) in pumps:
newPumps.append((pre.map(f),
pump.map(f)))

mapWitness[B](f: A => B):

newSuffix = suffix.map(f)

return Witness(newPumps, newSuffix)

We introduced the third algorithm to craft a
ReDoS attack string based on fuzzing
technique. It designed to translate a string with
embedded repeating patterns into a structured
Attack Pattern. It accomplishes this by iterating
through the string, identifying and extracting
repeating portions along with their associated
repetition counts and any preceding fixed parts.
These extracted repeating sections, known as
pumps, are then combined with the remaining
fixed parts (the suffix) to form the final Attack
Pattern. The process of generating attack strings
based on the identified repeating structure,
simplifying attack construction and enabling
developers to focus on the core attack logic
rather than the intricacies of manipulating
complex strings with repetition.

Algorithm 3: ReDoS based on fuzzing

Input: a repetition count n, a string seq
Output: attack string pattern
begin

pumps <- create_new_sequence()

str <- create_new_string_builder()

pos <- 0
while pos < size_of(seq):

match seq[pos]:
case Wrap(u):

No 1.CS (21) 2024 11




Journal of Science and Technology on Information security

pos <- pos + 1
str.append(as_string(u))
case Repeat(m, size):
pos <- pos + 1
repeat<-n+m
if repeat > 1:
s <- create_UString(str.result())
str.clear()
pump <- map_slice(seq, pos, pos +
size, element => as_string(element))
pump_string <- join(pump)
t <- create_UString(pump_string)
add_to_sequence(pumps, (s, t, m))
pos <- pos + size

suffix <- str.result()

return
suffix, n)

create_AttackPattern(pumpResult,

As shown in Figure 6, the algorithm is
assumed to be based on automata theory
(Checker.Automaton) at first and performs NFA
conversion, then falls back to the fuzzing
(Checker.Fuzz) if the size of the NFA exceeds
the threshold.

epsNFA =
EpsNFABuilder.build(pattern)

orderedNFA =
epsNFA.toOrderedNFA(maxNFASize).rename(
).mapAlphabet(lambda x: x.head)

return
AutomatonChecker.check(orderedNFA,
maxNFASize)

for cs in result;
for vul in cs:
if vul is Vulnerable:

attack=vul.buildAttackPattern(params.recallLim
it, params.maxRecallStringSize)

return
Diagnostics.Vulnerable(source, flags,
vul.toAttackComplexity(), attack, vul.hotspot,
Checker.Automaton)

else if vul is Safe:

return Diagnostics.Safe(source, flags,

vul.toAttackComplexity(), Checker.Automaton)

) ++ lterator(Diagnostics.Safe(source,
flags, AttackComplexity.Safe(false),
Checker.Automaton))

)

Algorithm 4: ReDoS detection based on
Automata theory and Fuzzing

Input: a source, flags, a pattern and params
Output: Result of Detection’s algorithm
begin

maxNFASize = if params.checker ==
Checker.Auto then params.maxNFASize else
Integer. MAX_VALUE

result = Try():
if params.checker == Checker.Auto and
repeatCount(pattern) >=
params.maxRepeatCount:
Checker.Fuzz
else:
Success(())

complexity = if pattern.isConstant:
Success(lterator.empty)
else:
if params.checker == Checker.Auto and
pattern.size >= params.maxPatternSize:
return Checker.Fuzz
else:
Success(())

IV. EXPERIMENT
TABLE 2: REGEX SETS FOR EVALUATION

Name Number Description

Online regex
examples from
RegExLib.com

RegLib [19] | 2,992

Regexes extracted
from the Snort
NIDS for data
packet filtering

Snort [20] 12,499

Regexes from
scraped Python
projects

Corpus [20] | 13,597

12 No 1.CS (21) 2024

This research presents a comprehensive
evaluation of different techniques for detecting
Regular Expression Denial of Service (ReDoS)
vulnerabilities. The experiment utilizes a large
dataset of 29,088 regexes collected from Table
1, serving as a benchmark for testing the
effectiveness of various methods. Five
techniques are compared: Our technique,




Journal of Science and Technology on Information security

ReScue [14], SlowFuzz [14], RXXR2 [16] and
Rexploiter [17], and NFAA [18].

Each technique is evaluated by running it
on the dataset and assessing the success rate of
generating ReDoS strings.

All experiments are conducted on a high-
performance server with 24 cores Intel Xeon Gold
6226R, 64 GB RAM DDR4 ECC 2933 MHz and
Ubuntu 22.04 LTS. The study's comprehensive
approach and detailed analysis provide valuable
insights into the strengths and weaknesses of
different ReDoS detection methods, aiding
researchers and developers in choosing the most
appropriate tool for their needs.

We selected 227 samples containing ReDoS
vulnerabilities and conducted 10 experiments on
this chosen dataset. The results show that
ReSCUE and our technique exhibit the highest
number of identified vulnerable regexes,
indicating their effectiveness in detecting
potential vulnerabilities. However, the lack of
TP rate for these methods makes it difficult to
directly compare their accuracy. SlowFuzz
achieves a lower detection rate, has a
considerably higher TP rate (31.3%), suggesting
better precision. RXXR2 boasts a high TP rate
(67.8%) but suffers from a large number of false
positives, making it less reliable. Rexploiter
relatively low TP rate (1.9%), shows the highest
number of false positives, highlighting the
potential for inaccurate detection. NFAA does
not detect any vulnerabilities, indicating its
inadequacy in handling this type of
vulnerability. The experiments emphasizes the
importance of our technique research to develop
more accurate and reliable methods for
detecting and attacking regex vulnerabilities.

TABLE 3: THE OVERALL EVALUATION RESULTS

Technique | Number Number | TP Avg
Vul FP Rate Time
©)
New 155 (68%) | - - 0.6523
Technique
ReSCUE 179 (79%) | - - 0.7154
SlowFuzz | 99 (44%) 45 31.3% | 0.5351

RXXR2 | 120 (53%) | 57 68% | 0.0034
Rexploiter | 40 (18.6%) | 2084 0.3512
NFAA 0 (0%) 712 N/A 2.5122
Summary 227 (100%)

V. CONCLUSION

This research presents a novel approach to
detect ReDoS vulnerabilities by combining the
strengths of both automata-based algorithms
and fuzzing techniques. We combined dynamic
and static analysis to detect and generate attack
strings for ReDoS vulnerabilities. This hybrid
approach aims to address the limitations of
individual methods, achieves a balance between
detection speed, accuracy, and attack string
generation effective.

The evaluation results demonstrate the
effectiveness of the proposed approach, detect a
significant number of wulnerabilities with a
reasonable accuracy. The implementation can
effectively identify ReDoS vulnerabilities in a
variety of scenarios, offer a valuable tool for
security researchers and developers. In future
research, we will focus on enhancing the detection
of ReDoS vulnerabilities based on the techniques
of automaton and fuzzing, and subsequently
generating more effective attack strings. Overall,
this research provides a promising solution for
effectively detecting ReDoS vulnerabilities and
contributes significantly to the field of regular
expression security.

REFERENCES

[1] OWASP (2010-02-10). "Regex
Service". Retrieved 2010-04-16.

[2] Son, D. T., Tram, N. T. K,, & Thu, T. T. .
(2022). Machine learning approach detects
DDoS attacks. Journal of Science and
Technology on Information Security, 1(15),
102-108. https://doi.org/10.54654/isj.v1i15.850.

[3] Martin Berglund, Frank Drewes, Brink van der
Merwe. 2014. Analyzing  Catastrophic
Backtracking Behavior in Practical Regular
Expression Matching. Electronic Proceedings
in Theoretical Computer Science 151(Proc.
AFL 2014).

Denial of

No 1.CS (21) 2024 13


https://en.wikipedia.org/wiki/OWASP
http://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS
http://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS

Journal of Science and Technology on Information security

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Efe Barla, Xin Du, James C. Davis. 2023.
Exploiting Input Sanitization for Regex Denial
of Service. Proceedings of the ACM/IEEE 44th
International ~ Conference on  Software
Engineering (ICSE) 2022.
https://arxiv.org/abs/2303.01996.

"Backtracking in .NET regular expressions -
NET". learn.microsoft.com. 11 August 2023.
When using System.Text.RegularExpressions to
process untrusted input, pass a timeout. A
malicious user can provide input to
RegularExpressions, causing a Denial-of-Service
attack. ASP.NET Core framework APIs that use
RegularExpressions pass a timeout.

Li, Yeting, et al. "ReDoSHunter: A Combined Static
and Dynamic Approach for Regular Expression
DoS Detection.” 30th USENIX  Security
Symposium (USENIX Security 21). 2021.

Davis, James C., Francisco Servant, and
Dongyoon Lee. 2021. "Using selective
memoization to defeat regular expression
denial of service (ReDoS)." 2021 IEEE
Symposium on Security and Privacy (SP), Los
Alamitos, CA, USA.

Paul Wilton. Beginning JavaScript. John Wiley
& Sons, 2004.

Pieter Hooimeijer, Benjamin Livshits, David
Molnar, Prateek Saxena, and Margus Veanes.
Fast and precise sanitizer analysis with BEK.
In USENIX Security Symposium, pages 1-16,
August 2011.

https://en.wikipedia.org/wiki/Thompson's_cons
truction.

Sugiyama, Satoshi, and Yasuhiko Minamide.
"Checking time linearity of regular expression
matching based on backtracking." Information
and Media Technologies 9.3 (2014): 222-232.

Shen, Yuju, et al. "ReScue: crafting regular
expression DoS  attacks." 2018 33rd
IEEE/ACM International Conference on
Automated Software Engineering (ASE).
IEEE, 2018.

Chida, Nariyoshi, and Tachio Terauchi.
2020."Automatic repair of vulnerable regular
expressions.” arXiv preprint arXiv:2010.12450.

Theofilos Petsios, Jason Zhao, Angelos D
Keromytis, and Suman Jana. 2017. Slowfuzz:
Automated domain-independent detection of
algorithmic  complexity vulnerabilities. In
Proceedings of the International Conference on
Computer and Communications Security (CCS
17). 2155-2168.

14 No 1.CS (21) 2024

[15]

[16]

[17]

[18]

[19]

[20]

https://doi.org/10.1145/3133956. 3134073.

James Kirrage, Asiri Rathnayake, and Hayo
Thielecke. 2013. Static analysis for regular
expression  denial-of-service  attacks. In
Proceedings of the 7th International
Conference on Network and System Security
(NSS ’13). 135-148. https://doi.org/
10.1007/978-3-642-38631-2_11.

Valentin Wiistholz, Oswaldo Olivo, Marijn JH
Heule, and Isil Dillig. 2017. Static detection of
DoS vulnerabilities in programs that use
regular expressions. In Proceedings of the
International Conference on Tools and
Algorithms for the Construction and Analysis
of  Systems  (TACAS ’17). 3-20.
https://doi.org/10.1007/ 978-3-662-54580-5_1.

Nicolaas Weideman, Brink van der Merwe,
Martin Berglund, and Bruce Watson. 2016.
Analyzing matching time behavior of
backtracking regular expression matchers by
using ambiguity of NFA. In Proceedings of the
International Conference on Implementation
and Application of Automata (CIAA ’16). 322—
334. https: //doi.org/10.1007/978-3-319-40946-
7_27.

Weber, Andreas, and Helmut Seidl. 1991. "On
the degree of ambiguity of finite automata.”
Theoretical Computer Science 88.2 (1991):
325-349.

Asiri Rathnayake and Hayo Thielecke. 2014.
Static analysis for regular expression
exponential runtime via substructural logics.
(2014). arXiv:arXiv:1405.7058.

Carl Chapman and Kathryn T Stolee. 2016.
Exploring regular expression usage and context
in Python. In Proceedings of the 25th
International Symposium on Software Testing
and Analysis (ISSTA ’16). 282-293.
https://doi.org/10.1145/ 2931037.2931073.


https://arxiv.org/abs/2303.01996
http://learn.microsoft.com/
http://asp.net/
https://en.wikipedia.org/wiki/Thompson%27s_construction
https://en.wikipedia.org/wiki/Thompson%27s_construction
https://doi.org/10.1145/3133956.%203134073

Journal of Science and Technology on Information security

ABOUT THE AUTHOR

Nguyen Trung Dung

Workplace: Research Institute 486,
Command 86

Email: ntdtoanud2011@gmail.com
Education: 1996-2002: Engineer of

A' é Information  Security; 2006-2008:
Master of Information Security;

2011-2019: Doctor of Philosophy.

Recent research direction: information security,

information technology.

Tén tac gia: Nguyén Trung Diing

Co quan cong tac: Vién nghién ciru 486, B Tu 1énh 86
Email: ntdtoanud2011@gmail.com

Qua trinh dao tao: 1996-2002: Ky su chuyén nganh
ATTT; 2006-2008: Thac sy chuyén nganh An toan
thong tin; 2011-2019: Tién s¥.

Hudng nghién ciru hién nay: An toan thdng tin, cong
ngh¢ thong tin, bao mat thong tin.

Pham Van Toi

Workplace: Research Institute 486,
Command 86

Email: toiphamvp@gmail.com
Education: 2009-2015: Engineer of

automation systems; 2015-2019:
Doctor of Philosophy
Recent research direction: information security,

information technology.
Tén tac gia: Pham Vian Téi

Co quan cong tac: Vién nghién ctru 486, Bo Tu 1énh
86

Email: toiphamvp@gmail.com

Qua trinh dao tao: 2009-2015: Ky su chuyén nganh cac
hé thong ty dong hoa; 2015-2019: Tién sy

Hudng nghién ciru hién nay: An toan thdng tin, cong
ngh¢ thong tin, bao mat thong tin.

Phung Minh Hieu

Workplace: Research Institute 486,
Command 86

P Email: pmhieu22@gmail.com

. Education: 2015-2020: Engineer of
j " Information ~ Security; 2020-2022:
. Master of Information Security

Recent research direction: information security,
information technology.

Tén tac gia: Phung Minh Hiéu

Co quan cong tac: Vién nghién ciru 486, B Tu 1énh 86
Email: pmhieu22@gmail.com

Qua trinh dao tao: 2015-2020: Ky su An toan thong tin;
2020-2022: Thac si An toan thong tin

Hudng nghién ctu hién nay: An toan thdng tin, cong
ngh¢ thong tin.

No 1.CS (21) 2024 15



